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Pattern selection in extended periodically forced systems: A continuum coupled map approach

Shankar C. Venkataramani*
Department of Mathematics, University of Chicago, Chicago, Illinois 60637

Edward Ott
Department of Physics, University of Maryland, College Park, Maryland 20742

~Received 23 June 2000; published 20 March 2001!

We propose that a useful approach to the modeling of periodically forced extended systems is through
continuum coupled map~CCM! models. CCM models are discrete time, continuous space models, mapping a
continuous spatially varying fieldjn(x) from time n to time n11. The efficacy of CCM models is illustrated
by an application to experiments of Umbanhowar, Melo, and Swinney@Nature382, 793 ~1996!# on vertically
vibrated granular layers. Using a simple CCM model incorporating temporal period doubling and spatial
patterning at a preferred length scale, we obtain results that bear remarkable similarities to the experimental
observations. The fact that the model does not make use of physics specific to granular layers suggests that
similar phenomena may be observed in other~nongranular! periodically forced, strongly dissipative systems.
We also present a framework for the analysis of pattern selection in CCM models using a truncated modal
expansion. Through the analysis, we predict scaling laws of various quantities, and these laws may be verifi-
able experimentally.
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I. INTRODUCTION

Pattern formation is a ubiquitous phenomenon in the
namics of extended nonlinear systems@1,2#. A few examples
of pattern forming systems are coupled reaction-diffus
systems@3#, vertically vibrated fluids~Faraday waves! @4#,
Rayleigh-Bénard convection@5#, and heart tissue@6#. Pat-
terns in extended systems arise as a result of the interpla
many factors, including the external forcing and/or the ex
able nature of the medium, the spatial interactions betw
the different parts of the extended system, and internal
sipation. It is often the case that exact dynamical equati
for these systems cannot be determined. Furthermore, ev
exact equations and parameters are determined, the equa
are often very hard to solve. Therefore, a useful approac
studying the dynamics of extended nonlinear systems
through the formulation of generic models.

Generic models~or model equations! are dynamical equa
tions that are much simpler than exact equations for the
tem of interest. However, they are designed to include
features of the exact equations that are suspected to lea
qualitative phenomena seen in real systems~e.g., pattern for-
mation @1#, coherent states and solitary waves@7#, bifurca-
tions, spatiotemporal chaos@8#, nontrivial collective behav-
ior @9#, etc.!. These models are therefore very useful
exposing the typical behavior to be expected in nonlin
pattern forming extended systems. Examples of such mo
include the Swift-Hohenberg equation, the compl
Ginzburg-Landau equation, and the Kuromoto-Shivashin
equation.

There are various classes of generic models including
tial differential equations~PDE models!, lattices of ordinary
differential equations~LODE models!, coupled map lattices
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~CML models!, and cellular automata~CA models!. These
classes of models are be distinguished by whether t
choose to treat the time, space, and field variables as
tinuous or discrete. This is illustrated in Table I, where w
also list a previously rarely used model class, which we c
continuum coupled map~CCM! models. In particular, CCMs
are discrete time, continuous space models, that map a
tinuous field variable defined on a continuous spatial dom
forward from a discrete time indexn to time indexn11.
Therefore, a CCM model is specified by giving an opera
F @•#, that maps the continuous fieldjn(x) forward in time:

jn11~x!5F @jn~x!#.

CCM models are particularly well suited for the study
periodically forced extended systems for the following re
sons.

~1! Because of the periodic forcing, the system does
have a continuous time translation symmetry. Rather, it ha
discrete time translation symmetry for translations by m
tiples of the forcing period. Therefore, a map is particula
appropriate for modeling the temporal dynamics of the s
tem.

~2! Using a continuous field on a continuous spatial d
main enables one to model patterns unconstrained by an
posed grid. This is appropriate for the modeling of patte
in extended systems.

~3! Since the temporal dynamics are given by a map, a
we can efficiently implement spatial coupling operators
spectral ~fast Fourier transform! techniques, numerica
implementations of CCM models can be made very efficie
This makes it possible to run simulations of CCM mode
much longer than simulations of equivalent PDE models
the same computational effort.
©2001 The American Physical Society02-1
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SHANKAR C. VENKATARAMANI AND EDWARD OTT PHYSICAL REVIEW E 63 046202
In this paper, we will use a CCM model to examine t
consequences of the interaction between temporal pe
doubling and spatial pattern formation with a preferr
length scale. This work was originally motivated by expe
ments@10–12# in which the authors observed the formatio
of a variety of two-dimensional patterns in a vertically v
brated thin granular layer@13#. We will see that the CCM
approach is very fruitful for the consideration of these e
periments.

This paper is organized as follows: In Sec. II, we brie
review the recent experimental results@10–12# and the ex-
perimental phase diagram. In Sec. III, we discuss some o
theoretical approaches to modeling these experiments
Sec. IV, we give some motivation for the CCM model equ
tions that we propose for describing the experiment. In S
V, we present results from numerical simulations of o
model and compare these results with the experimental
servations. We present a summary of the results of our an
sis of the pattern formation in Sec. VI. In Secs. VII–IX, w
give a detailed account of the analysis and we prese
concluding discussion in Sec. X.

II. VIBRATED GRANULAR LAYERS

In the experiments in Refs.@10–12#, the granular layer
consists of brass spheres, is supported from below by a h
zontal plate, and has an upper free surface. The syste
driven by vertically vibrating the plate sinusoidally. Varyin
the amplitudeA and the frequencyf 0 of the sinusoidal vibra-
tion leads to the formation of, and transitions between v
ous patterned states. These patterns are roughly analogo
Faraday wave patterns in vibrated liquid layers.

A variety of patterns are seen in these experiments.
example, in Ref.@10#, holding f 0 fixed and increasing the
oscillation amplitude, the following sequence of states w
observed: a uniform flat state oscillating atf 0 ; a stripe pat-
tern oscillating atf 0/2 ~i.e., the period of the pattern oscilla
tion is double the vibrational period!; a hexagonal pattern
also at f 0/2; two flat domains separated by a ‘‘kink’’ with
each domain oscillating atf 0/2 but with each in one of the
two possible temporalf 0/2 phases of oscillation; competin
square and stripe patterns atf 0/4 ~i.e., a further period dou-
bling has occurred!; f 0/4 hexagonal patterns; and, at high
driving, patterns disordered in space and time.~See Figs.
1~a!–1~f! of Ref. @10#.!

TABLE I. Classes of models for the description of pattern for
ing systems. The other possible classes~discrete field variable and a
continuous spatial domain or time! appear not to be physically rel
evant, since the dynamics is either discontinuous in space or t
or is trivial.

Model type Field variable~s! Spatial domain Time

PDE Continuous Continuous Continuou
LODE Continuous Discrete Continuous
CML Continuous Discrete Discrete
CA Discrete Discrete Discrete

CCM Continuous Continuous Discrete
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Figure 1 shows an experimental phase diagram from R
@10#, whereG is the nondimensionalized oscillation amp
tude:

G5~2p f 0!2A/g.

HereA is the amplitude of the oscillation of the plate,f 0 is
the oscillation frequency, andg is the acceleration of gravity

The results in Fig. 1 were obtained for a relatively th
layer, about seven grain diameters thick. When the la
thickness is increased~e.g., to 15 diameters! additional phe-
nomena are observed. These patterns were reported in
@11# and @12#. The most interesting of these additional ph
nomena is the presence of localized, solitary structures o
lating at f 0/2, which the authors calledoscillons. An oscillon
is a long-lived localizedf 0/2 structure that exists as an alte
nation between a hill and a depression of the layer surfa
These oscillons can be isolated~i.e., surrounded by thef 0 flat
state!, or else can exist in bound states of two, three, or m
regularly arranged oscillons. The oscillon phenomenon is
served in the vicinity of the transition between thef 0 flat
state and thef 0/2 patterns.

III. MODELING GRANULAR FLOWS

As the authors remarked in Ref.@12#, these experiments
provide a challenge to theory. In the case of Faraday wa
that is, parametrically driven surface waves in vibrated liqu
layers, the Navier-Stokes equations give a complete desc
tion of the dynamics of the system. The onset criteria for
patterns can be derived from these equations, both for id
fluids @14# and for viscous fluids@15#. The Navier-Stokes
equations can also be reduced to amplitude equations@16#,
that provide a good description of the pattern formation
Faraday waves. The situation is very different for granu
flows. For granular flows, there exist no equations, that c
respond in stature and in the range of applicability, to
Navier-Stokes equations for fluids@17,18#. It is therefore a
challenge to build an analytical model of the pattern form
tion seen in vibrated granular layers.

The only direct, first-principles approach to studying t

e,

FIG. 1. Experimental phase diagram from Refs.@10,12#.
2-2
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PATTERN SELECTION IN EXTENDED PERIODICALLY . . . PHYSICAL REVIEW E63 046202
dynamics of granular materials with many interacting p
ticles has been molecular-dynamics-type numerical sim
tions. Such molecular dynamics simulations of spheres o
vibrating plate reproduce the experimentally observed p
nomena@19# qualitatively and quantitatively. From the me
sured single particle velocity distributions as well as the c
relations of the particle positions and velocities in t
simulations @19#, the authors concluded that a useful a
proach to model the granular flows in the experime
@10–12# is through the continuum equations obtained fro
the kinetic theory of dissipative gases@20#. The results in
Ref. @21#, which revealed a continuum type stability diagra
for the stripe patterns, also suggested that a continuum m
will be appropriate for modeling the granular flow in th
vibrated layers. In ongoing work, many authors worked
the validation of the continuum equations by comparis
with molecular dynamics simulations, as well as using
equations to study the phenomena in vibrated granular la
@22#.

Another useful approach to this problem has been to p
tulate phenomenological equations for the vibrated gran
layer based on physical considerations or using analo
with hydrodynamics@23–28#. These models give results th
are in qualitative agreement with the experiments in porti
of the phase space. However, different models make dif
ent assumptions in modeling the underlying physics of
granular flow, or else have undetermined coefficients wh
are set in order to give agreement with the experime
Therefore, it is difficult to judge the relevance of the partic
lar physical ideas in these models to the behavior of gran
materials.

Our approach is motivated by the current lack of physi
understanding of dynamics of granular media@17#, and the
possibility that there exist no local equations describ
granular flow @18#. Thus, in building our model, we will
consider the underlying symmetries of the system and
qualitative features of the dynamics. We will use dime
sional analysis to identify the relevant variables, but w
strive to avoid modeling the physics of granular flows.

Our model and some of the results from it were first p
sented in Ref.@29#. The CCM framework arises naturally i
our model, since it is particularly suited to the symmetries
the system. To the extent that the model is free of phys
specific to the experimental system, we can regard the
perimentally observed features reproduced by the mode
universal. Although this approach will not shed light on t
physics of the underlying granular flow, it will enable us
identify the key dynamical features that lead to the obser
experimental behavior.

IV. CCM MODEL FOR VIBRATED GRANULAR LAYERS

Our goal is to produce a phenomenological model of
experimental results and, as stressed above, we wish to
minimum of physical input in building this model. By thi
approach, we wish to use our model to test hypotheses
cerning the essential model properties necessary for exp
ing the experimental results. As we argued earlier, the C
framework is ideal for this task.
04620
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It is relevant to consider the dynamics of a single inelas
ball on a vertically vibrated plate, analyzed by Mehta a
Luck in Ref. @30#. In this situation, the only control param
eter is the nondimensional vibration amplitudeG
54p2f 2A/g. Since the ball is inelastic, it loses all its kinet
energy on impact with the plate. On every cycle, the ball li
off the plate, at the point in the cycle when the accelerat
of the plate in the downward direction is greater than
acceleration due to gravityg. In this situation, the ball ‘‘for-
gets’’ its dynamical history in every cycle, and the dynam
can be entirely deduced from a knowledge of the time
flight between one bounce and the next, that is by a o
dimensional map.

This map was analyzed in detail in Ref.@30#. The dynam-
ics for this map is complicated because the map is
smooth~or even continuous!. For purposes of our model, th
following behaviors, which occur over significant ranges
G are the key features of this map.

~1! For G.1, the ball lifts off the plate at some point i
the cycle. The first behavior that is observed is a fixed po
for the time of flight map; that is, the dynamics of the ball
the same in every cycle, and the time of flight is shorter th
the oscillation period; the ball hits the plate once every cyc

~2! IncreasingG above a critical value causes this fixe
point to lose stability to a period doubled state. The times
flight alternate between a long flight and a short flight, a
these times are such that the ball hits the plate on ev
oscillation cycle.

~3! Above a larger value ofG the dynamics of the ball is
again given by a fixed point of the time of flight map, b
with the time of flight longer than the oscillation period. I
this regime, the ball hits the plate only once every tw
cycles.

These behaviors are represented schematically in F
2~a!, 2~b!, and 2~c!, respectively.G is the only relevant di-
mensionless parameter for the dynamics of a single inela
ball on a vibrating plate. For a granular layer, the other
mensionless parameters that can be experimentally varied
N, the thickness of the layer in grain diameters, andb
5 f 0

2a/g, which is a dimensionless measure of the frequen
of oscillation. Herea is the diameter of a typical grain. Th
parameterb can be written asa/ l , that is as a ratio of two
length scales, wherel 5g/ f 0

2.
We will first consider the situation whereN kept constant,

but G and b are varied. The first question in formulating
CCM model concerns the dimensionality of the field variab
j. Obviously the simplest choice is to take the field variab
to be a scalar. This is suggested by the fact that the dynam
of a single ball is given by a one-dimensional map. It is a
suggested by the very dissipative physics of granular me
when the layer hits the plate its kinetic energy is rapid
dissipated, so that when, later in the cycle, it departs fr
contact with the plate, it has ‘‘forgotten’’ the velocity with
which it struck the plate, and one might consequently exp
that its subsequent evolution is determined solely by
height profile~a scalar function! at the time it leaves contac
with the plate.

The next task is to specify a mapping ofj from timen to
time n11. The basic framework of our CCM model is a
2-3



e
f
l

w
th
f

ig
e

r

ill

are
ing
ur-
ble

-
and

-

ults

re
p,

in

d
f a
tify

-

rth

r,

s

to or

r
eri-
d to

o
n
th

d

SHANKAR C. VENKATARAMANI AND EDWARD OTT PHYSICAL REVIEW E 63 046202
follows. We consider a scalar fieldjn(x) at discrete integer
valued timesn which we think of as roughly representing th
height of the granular layer at positionx at a fixed phase o
the oscillation cycle. Herex is a continuous two-dimensiona
spatial variable. To advancejn(x) forward one time period,
we first apply a one-dimensional mapM to jn at each point
in space,

jn8~x!5M @jn~x!,r #, ~1!

wherer is a parameter of the chosen map function. Next
augment this nonlinear ‘‘local’’ discrete time dynamics wi
a linear spatial operatorL which couples the dynamics o
nearbyx locations:

jn11~x!5L@jn8~x!#. ~2!

Assuming translational invariance, the operatorL is of the
form

L@jn8~x!#5 f ~x! ^ jn8~x!, ~3!

where ^ denotes convolution. Since we do not expect s
nificant interaction betweenx locations that are distant, w
require that the spatial coupling functionf (x) should decay
rapidly for uxu@l, for a length scalel that we will specify
below. Letting jn(k) and f̄ (k) denote the spatial Fourie
transforms ofjn(x) and f (x), we have

j̄n11~k!5 f̄ ~k!j̄n8~k!. ~4!

The specification for a CCM model in this framework w
consist of choices of the map functionM and the functionf,

FIG. 2. The various dynamical behaviors of an inelastic ball
a vibrating plate. The solid line depicts the motion of the ball, a
the dashed line depicts the motion of the plate. The units along
axes are chosen so that the driving frequencyf 051/2p and the
acceleration due to gravityg51. ~a! G52: fixed point for the time
of flight map. ~b! G54: period-2 cycle with alternating long an
short hops. ~c! G56: fixed point with the ball hitting the plate
only once every two cycles.
04620
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specifying the spatial coupling operatorL. In Ref. @10# the
authors argued that the various patterns they observed
produced by interaction between temporal period doubl
and an instability that produces spatial variations on the s
face of the layer. We wish to test this in the simplest possi
way, using the above CCM framework@Eqs. ~1!–~4!#. In
particular, in choosingM and f, we use the hypothesis sug
gested by the experimental results that period doubling
the occurrence of a preferred spatial scale~e.g., the stripe
wavelength or the hexagon diameter! are the crucial at-
tributes of this system.

We incorporate the period doubling in the ‘‘local’’ tem
poral dynamics by choosing a unimodal mapM that has a
period doubling sequence. For most of the numerical res
in this paper, we use the map

M ~j,r !5r exp@2~j21!2/2#. ~5!

The map in Eq.~5! is similar to the logistic mapM (j,r )
5r j(12j), but it has the advantage that all orbits a
bounded. This is in contrast to iterating the logistic ma
where an initial negativej value yields an orbitj→2`.
One feature of map~5! that will turn out to be relevant to the
discussion below is the fact that all the period doublings
this map are supercritical.

Assuming that the ‘‘local’’ dynamics in the vibrate
granular layer is strongly correlated with the dynamics o
single inelastic ball on a vibrated plate, we are led to iden
the model parameterr which controls the ‘‘local’’ dynamics
in the model with the experimental parameterG which con-
trols the dynamics of the single inelastic ball.

The quantityg5 logu f̄(k)u is the growth rate for the am
plitude of a perturbation with wave vectork between two
collisions with the plate. Assuming isotropy, we hencefo
write f̄ as a function ofk5uku. Since j(x) is real, f̄ (k)
5 f̄ * (2k), where* denotes complex conjugation. Howeve
since f̄ depends only onuku5k, f̄ (k) is real. By the above
considerations, at a given forcing frequencyf 0 , the system
has two length scales;a and l. Therefore, the growth rate i
of the form

f̄ ~k!5g~k/k0 ,k/kc!. ~6!

We incorporate spatial patterning at a preferred scalek0
21 by

taking u f̄ (k)u to have a peak atk5k0 , with u f̄ (k0)u.1. Since
the patterns cannot have any structures on scales equal
smaller than the size of a single grainu f̄ (k)u decreases with
increasingk, becoming small@ u f̄ (k)u!1# at largek. Finally,
we required thatf (x) be short ranged, that isf (x) should
decay rapidly foruxu@l, wherel is the effective range ove
which the grains interact. Since the particles in the exp
ment do not move over distances that are large compare
the wavelength of the pattern, an appropriate choice forl is
k0

21. This implies thatf̄ (k)'c for k!k0 , for some constant
c. Without loss of generality, we can takec51. @If cÞ1, we
can absorb it by replacingr in Eq. ~5! by r /c.#

For simplicity, we choose the product form

n
d
e
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PATTERN SELECTION IN EXTENDED PERIODICALLY . . . PHYSICAL REVIEW E63 046202
g~k/k0 ,k/kc!5f~k/kc!exp@g~k/k0!#

for g(.,.). Wesatisfy the requirements from above by ma
ing the following choices forg(•) andf(•)

g~k!5
1

2 S k

k0
D 2F12

1

2 S k

k0
D 2G , ~7!

f~k!5sgn~kc
22k2!, ~8!

where sgn(y)51 for y>0 and sgn(y)521 for y,0.
At k50, we haveg(0)50 andf(0)51, yielding f̄ (0)

51. Note that we have choseng andf such thatf̄ (k)'1 on
scalesk!k0 . Consequently,f (x) looks like a delta function
for length scalesuxu@k0

21. A consequence of the fact tha

f̄ (0)51 is that the spatially homogeneous states are g
erned by the mapM, and the spatial coupling operatorL
does not play a role in the dynamics. Thus, for example
period doubling of the mapM at r 5r c implies the existence
of a corresponding transition in the CCM model, namely
period doubling of the homogeneous state atr 5r c .

The form of the growth rateg(k)5 logu f̄(k)u in Eq. ~7! is a
simple choice for an even function that is zero atk50, has a
peak atk5k0 , and is negative for largek. The presence o
the factorf(k) allows f̄ to change sign withk, and its form
in Eq. ~8! is a simple~rather arbitrary! choice for a function
that is even ink and changes sign as we changek. The factor
f introduces a second length scale in our model, and lead
patterns besides stripes@31#. The model has two dimension
less parametersr and kc /k0 , whose variations, we find nu
merically ~Sec. V!, play roles analogous to varying the d
mensionless accelerationG and the frequencyf 0 of the drive
in the experiment.

Our observation~Sec. V!, that variation ofr in our model
plays a role similar to variation ofG in the experiment, is
suggested by our previous discussion of the single inela
ball problem. Our observation that the variation ofkc /k0 in
the model plays a role similar to a variation of the dri
frequency in the experiment is suggested if we suppose
the ratiokc /k0 arises from the ratioa/ l 5 f 0

2a/g, of the two
natural lengths in the system. The important observatio
that this implies thatkc /k0 varies monotonically withf 0 and
is independent of the drive amplitude.

As will become clear from the theory~Secs. VI–IX!, the
important bifurcation phenomena are independent of the
cific choices in Eqs.~5!–~8!. We emphasize that we view
Eqs.~1!–~8! as a minimalist model, and that several obvio
generalizations immediately suggest themselves@e.g. a
two-or higher-dimensional map replacing the on
dimensional map Eq.~1!#. Our point is that even this simpl
representation is rich enough to display many of the exp
mentally observed effects, and that certain of these eff
can be regarded as physics independent and universa
systems in which patterning and period doubling intera
We will return to the discussion of this point in Sec. X.
04620
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V. NUMERICAL SIMULATION

Figures 3~a!–3~f! show numerical results from our mode
as r andkc /k0 are changed. These pictures are qualitativ
similar to those in Ref.@10#. We regard as particularly sig
nificant the fact that, in our model, as we increaser, the
bifurcation sequence is a period-1 flat state bifurcating
give a period-2 pattern which then becomes a period-2
state and eventually a period-4 pattern. Thus,with an in-
crease of the parameter, the period-2 and -4 patterns
separated by a period-2 flat state. This basic sequence, als
observed in the experiment, is universal in that it does
depend on the details of the model. In particular, it is pres
even withf(k) removed, i.e.,f̄ (k)5exp@g(k)#.

Figure 4 shows the approximate locations in the two
rameter space@r ,(kc /k0)# of the various spatiotemporal be
haviors numerically exhibited by our model. We note that

FIG. 3. Extended patterns obtained numerically in our mod
~a! Period-2 stripes atr 51.9, (kc /k0)255. ~b! Period-2 squares a
r 51.9, (kc /k0)251.5. ~c! Period-2 hexagons atr 52.05, (kc /k0)2

52.6. ~d! Period-2 flat state with a kink atr 52.4, (kc /k0)255 ~the
kink is the border region between the highj and the lowj areas!.
~e! Period-4 stripes atr 52.7, (kc /k0)255.0. ~f! Disorder at r
53.2, (kc /k0)255.
2-5



s
y
th

ro
ou
te
th
o
a

th

e

a
th
er
x

s
d

l b

le,

re
fo

d-
b

r to

al
se

-
ity
the
in
the
eri-

us
our
is
the
for

ula-
ce-
us

s
stic
we
ur

rly-
ted

se

tic

ical

SHANKAR C. VENKATARAMANI AND EDWARD OTT PHYSICAL REVIEW E 63 046202
we crudely identifyr with the experimental dimensionles
accelerationG and kc /k0 with the experimental frequenc
f 0 , then there is striking qualitative agreement between
phase diagram obtained numerically from our model~Fig. 4!
and the experimental phase diagram for thin layers~Fig. 1!.
In what follows, we consider a rangekc /k0.1, correspond-
ing to f̄ (k0).1.

The phases in Fig. 4 correspond to states that evolve f
starting at a small initial perturbation about a homogene
state. If, on the other hand, we follow large amplitude sta
with slow parameter changes, then we find that some of
transitions that are nonhysteretic in the experiment sh
substantial hysteresis in the model. We will discuss this
pect further in Sec. X, when we consider extensions of
simple model.

Other behaviors are observed experimentally wh
thicker layers are vibrated@11,12#. In particular, the experi-
ments observeoscillons—localized period-2 structures on
period-1 flat background state, in the transition between
period 1-flat state and the period-2 patterns. For thick lay
this transition is significantly hysteretic and the oscillons e
ist in the transition region.

The bifurcations for the map in Eq.~5! ~i.e., the bifurca-
tions of the full system atk50! are all supercritical. As we
shall see in Sec IX, this implies that there is no hysteresi
the transition between the period-1 flat state and the perio
patterns. We can incorporate hysteresis into our mode
changing the mapM to one which has a subcritical~hyster-
etic! period doubling from the fixed point. As an examp
the map

M ~j,r !52~r j1j3!exp~2j2/2! ~9!

has a subcritical period doubling from the fixed point. Figu
5 is a schematic representation of the bifurcation diagram
this map. With this map used in place of Eq.~5!, we see
period-2 localized states in the regime where the perio
homogeneous state and the period-2 square state are

FIG. 4. Phase diagram showing the various stable patterns
in numerical simulations with the model@Eqs.~1!–~8!#.
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stable to small perturbations. These structures are simila
the oscillons seen in the experiments.

Figure 6~a! shows two oscillons in opposite tempor
phases, and Fig. 6~b! shows a bound state of several clo
oscillons. We note that Tsimring and Aronson@23# and
Crawford and Riecke@28# also obtained oscillons with a sub
critical period doubling. It thus appears that subcritical
may be key to the oscillon phenomenon. As noted above,
oscillons that we find numerically in our model are stable
the parameter range of the hysteretic transition from
period-1 flat state to the period-2 patterns, as in the exp
ments.

VI. SUMMARY OF THE RESULTS

In the remainder of this paper, we will analyze vario
aspects of the pattern formation that we observe in
model. In Sec. VII, we perform a linear stability analys
about the spatially homogeneous periodic solutions of
system. From this analysis, we deduce the onset criteria
the period-2 and -4 patterns that are observed in our sim
tions. We also show that, generically, the bifurcation s
nario on increasing the driving is period-1 homogeneo
state→period-2 patterned state→period-2 homogeneou
state→period-4 patterned state, explaining this characteri
feature of the experimental phase diagram. In Sec. VIII,
deduce a framework for a weakly nonlinear analysis of o
model. Using group-theoretic considerations of the unde
ing symmetries of the system, we show that a trunca

en

FIG. 5. The bifurcation diagram for a map with a hystere
period doubling.

FIG. 6. Localized states obtained using a map with subcrit
bifurcations. ~a! Two oscillons out of phase@r 50.65, (kc /k0)2

51.7#. ~b! A bound state with coordination number 3@r 50.55,
(kc /k0)251.7#.
2-6
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modal expansion can be used to study the selection of v
ous patterns in different parameter regimes.

In Sec. IX, we specialize to the case of period-2 patter
Close to the onset of the patterns, there is a strong separ
of the time scales for the evolution of the amplitudes of
various modes in the truncated modal expansion. We s
that the evolution of the pattern on a long time scale is
termined by the dynamics of a small number@O(1)# of
dominant modes, and that the amplitudes of the rest of
modes are slaved to the the amplitudes of the domin
modes. This technique greatly simplifies the determination
the selected patterns. It also enables us to study the bifu
tions between the various patterned regimes.

We will now list some of the principal results form ou
analysis. These results are scaling laws for various quant
that are valid close to bifurcations. The scaling laws are
terms of a supercriticality parametere. e is defined so that the
linear growth of the amplitudean(k) of the fastest growing
modes is given byuan11(k)u/uan(k)u5(11e). The onset of
the pattern is thus given bye50.

~1! The case of one dominant mode corresponds to st
solutions. We present explicit solutions to the weakly no
linear equations. These equations give the scaling

hst;e1/2

for the stripe amplitudehst close to onset. We also discus
the symmetry properties of the stripe patterns.

~2! The case of two dominant modes corresponds
rhombus and square patterns. We show that square pat
form generically, i.e., without any fine tuning of paramete
We present explicit solutions for these patterns that give
scaling law

hrh;e1/2

for the pattern amplitudehrh near onset. We discuss the b
furcation between the stripe and the square solutions,
show that it is nonhysteretic as a bifurcation between ste
states, that is, in the limit that the run timeT→`. We also
deduce the scaling law

Dp;~eT!21,

whereDp is the apparent hysteresis in a generic paramete
the transition between the stripe and rhombus~square! solu-
tions for experiments run for a finite durationT. We also
show the existence oftransient stripes, that is patterns tha
are asymptotically square patterns, but look like stripes i
transient stage of their evolution.

~3! The case of three dominant modes with an additio
imposed symmetry corresponds to hexagonal patterns.
show that there is a hexagonal pattern solution near the o
of period-2 patterns, but it is linearly unstable to the str
patterns, thereby explaining why we do not see hexago
patterns near the onset of the period-2 patterns.

~4! We also analyze a model that corresponds to the
frequency forcing experiments@10#. We show that breaking
the discrete time translation symmetryt→t11/f 0 where f 0
is the frequency of the dominant forcing can lead to
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formation of stable hexagonal patterns, as seen in the exp
ments. The crossover between the behavior correspondin
no symmetry breaking and stripe patterns, to the beha
with symmetry breaking and stable hexagons is given by

D;e1/2,

whereD is a measure of the symmetry breaking~say the ratio
of the amplitudes of thef 0 and f 0/2 components of the
drive.!

We believe that these scaling laws, especially the cro
over behavior for the two frequency forcing, can be verifi
experimentally. In the experiments, the parametere is given
by

e;uG2Gcu,

where Gc is the value of the parameterG at the relevant
bifurcation.

In our analysis, we also discuss various symmetry con
erations for the various patterns. Experimentally observa
consequences of these symmetries include the occurren
nonoccurrence of fronts separating domains of patterns w
different temporal phases@10#.

VII. STABILITY ANALYSIS FOR THE ONSET OF
PATTERNS

We will first investigate the stability of the spatially ho
mogeneous and temporally periodic states to the forma
of spatially patterned states. This analysis will give crite
for the onset of patterned states. It will also explain the se
ration of the patterned period-2 and patterned period-4 st
by a period-2 homogeneous state.

For a given value ofr, let the one-dimensional ma
M (j,r ) have a stable period-p periodic orbitj1 ,j2 ,...,jp .
Then M (jp ,r )5jp115j1 . The stability index of the peri-
odic orbit is given by

lp~r !5N~j1!N~j2!¯N~jp!,

with

N~j!5
]M ~j,r !

]j
.

Since the orbit is assumed to be stable, it follows th
ulp(r )u,1. Recall that at a period doubling of a periodp
orbit to a period-2p orbit, the stability index oflp(r ) de-
creases through21. Furthermore, for the map in Eq.~5! and
p51,2,3,lp(r ) decreases monotonically withr.

For our spatiotemporal model@Eqs. ~1!–~8!#, we now
consider the stability of the sequence of spatially homo
neous statesj i(x)5j i to small perturbations, so thatjn(x)
5jn1djn(x). Equation~1! yields

djn118 ~x!5N~jn!djn~x!.

Equation~2! yields

dj̄n11~k!5N~jn! f̄ ~k!dj̄n~k!.
2-7
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After p iterations, we have

dj̄n1p~k!5lp~r !@ f̄ ~k!#pdj̄n~k!.

Since u f̄ (k)u has a peak atk5k0 , it follows that the
period-p spatially homogeneous states are stable to spat
varying perturbations ifulp(r )@ f̄ (k0)#pu,1. It also follows
that the wave vectorsk with the largest growth rate hav
uku5k0 . Consequently, the spatially homogeneous state
become unstable to a spatially varying~patterned! state for
ulp(r )@ f̄ (k0)#pu.1.

When the spatially homogeneous state becomes unst
close to onset, the patterned state will consist of wave v
tors k with uku close tok0 . The period-p spatially homoge-
neous states are unstable to a periodp spatially varying state
if lp(r )@ f̄ (k0)#p.1, and are unstable to a period-2p pattern
if lp(r )@ f̄ (k0)#p,21.

We will now consider the bifurcation scenario asr is var-
ied through the range over which the period-p orbit is stable
for the mapM. We will assume that the period-p orbit is
created by a period doubling from a period-p/2 orbit, and
that it becomes unstable by period doubling to a periodp
orbit. The period-p orbit is born ~first becomes stable! at a
value ofr 5r 2 such thatlp(r 2)51. It becomes unstable t
a period-2p orbit by period doubling atr 5r 1 such that
lp(r 1)521. At this point,l2p(r 1)5(lp(r 1))251, so that
a period-2p orbit is born. If the mapM is smooth,lp(r ) will
vary smoothly as a function ofr in the range@r 2 ,r 1#. Con-
sequently, there is a valuer 0 in this range such thatlp(r 0)
50. At this value ofr, the period-p orbit is said to be super
stable.

At the superstable point,

lp~r 0!@ f̄ ~k0!#p50.

Consequently, there is a range ofr values aroundr 0 such that
ulp(r )@ f̄ (k0)#pu,1, and, in this range, the homogeneo
period-p state is stable to all small perturbations.

Since f̄ (k0).1, it follows that

lp~r 2!@ f̄ ~k0!#p.1.

Consequently, there is a range ofr values includingr 2 but
less thanr 0 , such thatlp(r )@ f̄ (k0)#p.1; in this range, the
homogeneous period-p state is unstable to a period-p pat-
terned state. Also,

lp~r 1!@ f̄ ~k0!#p,21,

so that there is a range ofr values includingr 1 but greater
thanr 0 , such thatlp(r )@ f̄ (k0)#p,21, and in this range, the
homogeneous period-p state is unstable to a period-2p pat-
terned state.

We will illustrate the above bifurcation scenario fo
period-1 and -2 homogeneous states. Figure 7~a! is a bifur-
cation diagram for a generic mapM (j,r ) that undergoes a
supercritical period doubling@e.g., Eq.~5!#, and Fig. 7~b!
schematically shows the stability index for attracting pe
04620
lly

ill

le,
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odic orbits~or fixed points! versusr. At r 5r a , the period-1
orbit of the map is superstable so thatl1(r a)50. As we
increaser, at r 5r c , l1(r c)521, and the mapM undergoes
a period doubling. On further increasingr, the period-2 orbit
becomes superstable atr 5r e , so thatl2(r e)50.

r b satisfies r a,r b,r c , and is such thatl1(r b) f̄ (k0)
521. Therefore, the period-1 homogeneous state beco
unstable to a period-2 pattern atr 5r b . r d is in the range
r c,r d,r e , and it satisfiesl2(r d) f̄ 2(k0)51. At this point,
the period-2 homogeneous state becomes stable. On fu
increasingr, there exists a parameter valuer f with r f.r e ,
such thatl2(r f) f̄ 2(k0)521. At this value ofr, the period-2
homogeneous state becomes unstable to a period-4 patt

As is evident from this argument, for models in th
framework, we should generically expect the following b
furcation scenario: period-1 homogeneous state→period-2
patterned state→period-2 homogeneous state→period-4 pat-
ternedstate. Note that this conclusion does not depend on
precise details of the model, namely, the functionsf andM.
Also note that, since these are generic bifurcations, this
quence is stable to system perturbations that destroy the
cial form of our CCM model; i.e., a local period doublin
nonlinear map followed by a linear spatial coupling.

VIII. ANALYSIS OF EXTENDED PATTERNS

The elementary stability considerations in Sec. VII gi
us the basic bifurcation scenario and also the values of
parameterr at which there are bifurcations between fl
states and patterned states. Although the stability anal
indicates that patterns with a length scale 1/k0 are formed, it
does not give us any information on the nature of the p
terns.

In this section we will analyze the model further and d
termine the patterns that are selected near onset. If we
sider the model on a square region (x,y)P@0,L#3@0,L# with
periodic boundary conditions, the scalar fieldj can be ex-
pressed in terms of the Fourier modes as

FIG. 7. ~a! Schematic bifurcation diagram near a period do
bling. ~b! The stability indexl(r ) for the stable periodic~fixed!
points.
2-8
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jn~x!5 (
~ i , j !PZ2

j̄n~k i j !e
iki j •x, ~10!

whereZ2 is the integer lattice in two dimensions, and

k i j 5S 2p i

L
,
2p j

L D .

Sincejn is real, it follows thatj̄n(2k)5 j̄n* (k), wherej̄* is

the complex conjugate ofj̄. We will assume that the squar
region is much larger than the wavelength of the pattern,
is k0L@1.

In order to determine the selection of patterns, we nee
look at the equations for the evolution of the amplitud
j̄n(k) beyond the linear order. A formal procedure would
as follows.

~1! Drop the terms in the Fourier series withuki j u@k0 .
@Since f̄ (k)!1 for k@k0 , these modes are strongly damp
in every iteration.# This converts the infinite sum to a finit
sum withO@(k0L)2# terms.

~2! Expand the nonlinear equations that specify our mo
in powers of the mode amplitudesj̄n(k), and retain the low-
est order terms.

This, however, is not a practical framework for the an
lytical study of pattern selection, because we will obta
O@(k0L)2# nonlinear equations with the mode amplitud
j̄n(k) as dynamical variables. We therefore need to sign
cantly reduce the number of degrees of freedom that we h
to consider. The procedure that we use to carry out this
duction is analogous to the procedure used in PDE mode
pattern forming systems where the patterns are represe
by amplitude equations which are then analyzed in
weakly nonlinear regime@1#.

We motivate our reduction procedure by considering
results from a typical simulation of the model. Figure
shows the evolution of a pattern from an initial state tha
spatially homogeneous with a small random perturbati
We use three quantities,dn , bn , and Kn that are defined
below, to characterize the evolution of the pattern. The ty
cal amplitude of the patternjn(x) is given by the mean
square fluctuation

dn
25L22E jn

2~x!dx2L22S E jn~x!dxD 2

5 (
~ i , j !PZ2

u j̄n~k i j !u22u j̄n~0!u2.

We measure the deviation from temporal periodicity by
~normalized! quantity

bn
25

1

dn
2L2 E @jn1p~x!2jn~x!#2dx,

wherep is the presumed periodicity of the system. Final
we define the effective number of modes to be
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Kn5
1

2 S dn
2

max~ i , j !PZ2,~ i , j !Þ~0,0!u j̄n~k i j !u2D .

The factor 1/2 in the definition ofKn is to account for the
fact thatjn is real, and this impliesj̄n(2k)5 j̄n(k), which is
effectively one~complex! mode amplitude.

Figures 9, 10, and 11 show the evolution of the quantit

FIG. 8. Various regimes in the formation of a pattern, starti
from a random, close to homogeneous, initial condition. The par
eters arer 51.73, (kc /k0)252.5.~a! The pattern after ten iterations
~b! The patterns after 102 iterations.~c! The patterns after 103 itera-
tions. ~d! The patterns after 104 iterations.

FIG. 9. The evolution ofdn
2 with the time indexn for the simu-

lation depicted in Fig. 8.
2-9
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SHANKAR C. VENKATARAMANI AND EDWARD OTT PHYSICAL REVIEW E 63 046202
dn , bn , andKn for the dynamics illustrated in Fig. 8. Ther
appear to be four regimes in the evolution of a pattern
state.

~1! There is a short initial transient forn&100. At this
stage, the mode amplitudes of the wave vectors withuku
sufficiently different fromk0 decay rapidly, and the quant
ties dn

2, bn
2, andKn all decrease rapidly.

~2! Phase~1! is followed by a phase of exponentia
growth of dn

2 for 100&n&2000. In this regime, the ampli
tudes of all the unstable modes grow in accordance with
predictions from the linearization about the homogene
state that was considered in Sec. VII. The growth rate for
modes withk5k0 in this phase is given by log(ul(r) f̄(k0)u),
so that the associated time scale is

t5
1

log@ ul~r ! f̄ ~k0!u#
.

FIG. 10. The deviation from periodicity vsn for the simulation
depicted in Fig. 8.

FIG. 11. The dependence of the effective number of modes
the time indexn for the simulation depicted in Fig. 8.
04620
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For our choices of parameter,t'400. In this regime, no
pattern has yet been selected.bn is approximately a constan
in this regime.

~3! After about 2000 iterations, the growth ofdn
2 saturates.

To a good approximation, the system is in a periodic state
this intermediate regime, the nonlinearities in the dynam
have selected a pattern, in this case a stripe pattern. H
ever, this pattern is not ‘‘global,’’ in that the stripes do n
have the same orientation through out the square. Ra
they have domains of constant orientation, and the typ
length scale of a constant orientation domain is on the or
of a few wavelengths.

~4! There is a slow coarsening process for 103&n&104,
wherein the domains compete, with some of them growing
the expense of the others. After about 104 iterations, which is
on a time scaleT@t, one domain takes over the entir
square region. The system is now in a periodic steady s
and in this regime the stripes are globally lined up.

A. Local degrees of freedom

The preceding discussion shows that the dynamics of
system has multiple spatial and temporal scales. Furthe
order to describe the pattern selection in this system, we n
to look at the dynamics in the intermediate regime where
amplitude of the patterns have saturated, but the patterns
not yet ‘‘global.’’

For a stripe pattern, we would expect three degrees
freedom—the stripe amplitude, phase, and orientation—to
sufficient in order to describe the pattern. For the interme
ate regimen'103, we see thatKn.1 for the simulation
illustrated in Figs. 8 and 11. This is due to the fact that th
are many domains each of which has a stripe pattern,
with an independent orientation and amplitude. This make
hard to describe the dynamics of this regime, since we n
to describe the dynamics of many degrees of freedom
contrast, forn'104, Kn'1 to within a few percent. There
fore, we expect that it is much simpler to describe this
gime. The large number of effective degrees of freedom
the intermediate quasi-steady state is due to the follow
two features in our model.

~1! The dynamics given by the mapM in Eq. ~1! is purely
local, and the functionf (x) in Eq. ~3! is short ranged with an
effective interaction range'k0

21. Consequently, if we divide
the square region into domains that have a length scal
satisfyingk0

21! l !L, the dynamics on each of these smal
domains is largely independent of the dynamics on the o
domains, at least for the time scales corresponding to
initial growth of the modes, which is the time scale at whi
patterns first appear.

~2! If k0L@1, the boundaries do not play a significant ro
in the dynamics. In this case, the model is exactly invari
under time translations by one time step, and is appro
mately invariant under spatial translations, rotations, and
flections about arbitrary directions.

As a consequence of remark~2! above, the symmetry
group for the equations on an infinite spatial domain, i.e.
the limit L→` is
n

2-10
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G5Z3R23O~2!,

where the first factorZ is from the~discrete! time translation
symmetry, the second factor is the translation group in t
dimensions, and the third factor is the approximate symm
under rotations and reflections. IfgPG is an element of the
symmetry group, theng5(m,a,M ), wherem is an integer,
aPR2, andM is a 232 orthogonal matrix. The action of a
elementg5(m,a,M ) on the scalar fieldjn(x) is given by

Sg@jn~x!#5jn8~x8!

where n85n1m and x85M•(x1a). We will henceforth
refer toG as the symmetry group of the dynamical syste
on a finite domain of sizeL, even though this is strictly true
only in the limit L→`.

A consequence of this~approximate! symmetry is that,
even if we are in a parameter regime with a unique sta
patternP that is an attractor for the system, there is deg
eracy in the asymptotic states of the system associated
the symmetries of the equations.

The degeneracies due to the symmetries of the sys
along with the short range of the interaction imply that it
possible to sustain different solutions in different spatial d
mains for time intervals that are long compared to the ti
scale for the initial growth. In a parameter regime where
period-p patternP(x,n modp) is the unique stable pattern
the intermediate quasi-steady-state is described by the
lowing ‘‘domain decomposition.’’

~1! The squareR5@0,L#2 is divided into domainsDi , i
51,2, . . . ,M .

~2! On each domainDi , away from the boundaries of th
domain, the scalar fieldjn(x) is close to the scalar field
j`

i (x,n modp) of a ‘‘global’’ pattern, that is a pattern which
is a stable, asymptotic, periodp steady state.

~3! The domainsDi as well as the asymptotic patternj`
i

on the domainDi are nearly unchanged over the time scalet,
the characteristic time for linear growth of the modes. H
the patternsj`

i are given by the action of a symmetry tran
formation on the patternP. This notion can be formalized a
follows. LetS denote the set of all the solutionsj`(x,n) that
are equivalent toP(x,n) modulo the action of a symmetr
transformation inG. Let G#G denote theisotropy subgroup
for the patternP, that is the set of all the elements ofG, that
leaveP invariant@32#. ThenG is the symmetry group of the
patternP, since

Sg@P~x,n!#5P~x,n!

for all gPG. G is a normal subgroup ofG @32#. The quotient
groupP5G/G, is the set of all the transformations betwe
the elements ofS, the set of distinct pattern solutions equiv
lent to P(x,n) @32#. We will call P the transformation group
of the solution setS, and every elementgPP gives a solu-
tion jn(x) equivalent toP by

jn~x!5Sg@P~x,n!#.
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From our earlier discussion, the pattern on each domainDi is
characterized by an elementgiPP. We can define a field of
the symmetry elements

g~x,n!5(
i

gi~n!xDi ~n!~x!, ~11!

wherexA(x) is the indicator function for the setA. From our
discussion above, it follows thatg(x,n) does not vary sig-
nificantly over a length scalel @k0 and a time scaleT@t.
Therefore, we can coarse grain the fieldg over these scales to
obtain a smooth, slowly varying functiong̃(x,n). To de-
scribe the quasisteady intermediate state and the approa
the asymptotic periodic pattern, it suffices to consider
dynamics ofg̃(x,n). We will call the field g̃ the local de-
grees of freedomof the system. We will make these argu
ments mathematically rigorous by doing a multiple tim
scale analysis of the system in a future publication, where
will also determine the dynamical equation for the fieldg̃
@33#.

The domain decomposition effectively decouples the
namics of the pattern in the intermediate state from the p
tern selection problem. The pattern selection problem
duces to finding the appropriate asymptotic patternP, and a
description of the dynamics in the intermediate state is gi
by the dynamics of the fieldg̃ which does not play a role in
determining the patternP. In what follows our concern is
with determining the stable patternP.

B. Truncated modal expansions

We have argued that, in order to determine the selec
of patterns, it suffices to find the stable global patternP.
Since the patterns are selected in the initial phase on a
scalet and the dynamics are such that there is no signific
interaction between domains of sizel @k0

21 on a time scale
t, it suffices to restrict our attention to such a domain a
look at the pattern that is selected on this domain. Note
a domain of sizel @k0

21 is sufficiently large in order to dis-
cern patterns with a scalek0

21. We now attempt to determine
the pattern selected on such a domain as well as determ
the dynamics in the initial transient growth stage leading
the formation of the selected pattern.

Given a domainD with a length scalel, we see that
eik1•x'eik2•x for all xPD if uk12k2u!1/l . Therefore, we
can coarse grain the Fourier mode amplitudes over a re
of size smaller than 1/l in Fourier space. Letk be in the
center ofK, a coarse-grained region in Fourier space. If t
point x0 in the domainD is such thatD is contained in a disk
centered atx0 of radius l, we definebn(k), the coarse-
grained amplitude for the regionK, by requiring that

bn~k!eik•x0' (
ki j PK

j̄n~k i j !e
iki j •x

for all xPD. Settingx5x0 , we thus takebn(k) to be

bn~k!5 (
ki j PK

j̄n~k i j !e
i ~ki j 2k!•x0. ~12!
2-11
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From the symmetries ofj̄n , we havebn(2k)5bn* (k). From
Eqs.~12! and ~10!, we see that on the domainD, the scalar
field j is given by

jn~x!' (
kmPC

bn~km!eikm•x, ~13!

where the setC is the set of the centers of the coarse-grain
regions in Fourier space that contribute significantly to
sum in Eq.~10!. Equation~13! is a truncated modal expan
sion for j on a domainD. In general, the size ofC is small
and the number of terms in this sum for a patternP is of the
same order as the numberKn in the periodic regime at long
times. Therefore, this is an effective way to reduce the nu
ber of degrees of freedom. However, this expansion give
description that is valid even in the initial stages of the p
tern selection. Note that, unlike the amplitudes of the Fou
modes which are defined on an integer lattice, the setC is not
a priori restricted to be of any particular geometric form.

IX. PERIOD-2 PATTERNS

Our discussion of pattern selection up to this point h
been general and is valid for all parameter regimes of
model. We will now restrict ourselves to the pattern select
problem for period-2 patterns.

We begin by considering the parameter regime near o
of the period-2 patterns. From our discussion in Sec. VII,
see that the parameterr 5r b at onset is given by
l(r b) f̄ (k0)521. For r .r b , l(r ) f̄ (k0),21. We define a
supercriticality parametere by

e52l~r ! f̄ ~k0!21.

We can define a mode-dependent growth rate by

a~k,r !5l~r ! f̄ ~ uku!.

Thena(k,r )52(11e) if uku5k0 . We will assume that we
are sufficiently close to onset (r 2r b is sufficiently small! so
that for ah'1/l and am@1/t, we have

a~k,r !.211m if zuku2k0z.h. ~14!

This is always possible sincet is very large near the onse
and ua(k,r )u has a single peak atuku5k0 . From this point,
we will keep r fixed and suppress the dependence of
various quantities onr, i.e., for example, we denotel(r ) by
l.

We can expand the nonlinear map in Eq.~1! about the
~stable! fixed pointj* to obtain

M ~j,r !2j* 5l~j2j* !1b~j2j* !21g~j2j* !3

1O@~j2j* !4#. ~15!

For reasons that will become clear below, we need to exp
to third order inj2j* .

From the modal expansion in Eq.~13!, we see that
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jn~x!2j* 5bn~0!2j* 1 (
kmPC,kÞ0

bn~km!eikm•x

5 (
kmPC

an~km!eikm•x,

wherea(0)5b(0)2j* anda(k)5b(k) for kPC,kÞ0. Us-
ing this expression and Eq.~15! gives an expression fo
jn118 (x) with errors of ordera4, wherea5maxkPCuan(k)u.
We need to coarse grain this expression by the same reg
that we used for definingjn(x) in order to keep a consisten
modal expansion. This procedure is effected by settingk
'kp wherek is arbitrary andkpPC, if uk2kpu,1/l . The
linear operatorL is given by

L@eikm•x#5 f̄ ~ ukmu!eikm•x-.

for all kmPC. Since F @jn#5L@M (jn)#5jn11 , we can
compare the terms of the modal expansions ofL@M (jn)#
andjn11 to obtain

an11~k!5a~k!an~k!

1 f̄ ~ uku!S b(
k1

(
k2

I b~k11k22k!an~k1!an~k2!

1g(
k1

(
k2

(
k3

I b~k11k21k32k!

3an~k1!an~k2!an~k3! D 1O~a4!, ~16!

where all the summations are over the relevantk i in C, and
I b is an indicator function given byI b(k)51 if uku,1/l , and
zero otherwise.

We will consider this equation for the modes withzuku
2k0z.1/l anduku5k0 separately. The linear analysis in Se
VII suggests that the modes with the largest amplitudes h
uku5k0 . In the initial stages of the growth, the evolution of
mode amplitudean(k1) with uk1u5k0 is given by

an11~k1!52~11e!an~k1!1N@$an~k!%#. ~17!

whereN@$an(k)%# is a nonlinear term that depends on the
of mode amplitudes$an(k)%. This leads us to consider th
inhomogeneous difference equation

an115aan1 f n . ~18!

We can solve this equation to obtain

an115an11a01 (
m50

n

an2mf m . ~19!

Therefore, we can solve Eq.~17! to obtain

an~k1!5~21!n~11e!na0~k1!

1 (
m50

n21

~21!n2m21~11e!n2m21Nm ,
2-12
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whereNm is the nonlinear term with the dependencies s
pressed. The linearized solution obtained by neglecting
nonlinear terms is valid forn such thatne!1 and uNnu
!euan(k1)u. If the dominant nonlinearity is of the form
N($an%);ap, we see that the nonlinearities become imp
tant whenea;ap, that is

a;e1/~p21!.

Therefore, to time scales of ordert'1/e and amplitudes
smaller that e1/(p21), the mode amplitudes withuku5k0
evolve independently of each other, and grow exponentia

Once the nonlinearityNn becomes comparable t
ean(k1), the evolution depends on the sign of the nonline
ity. From Eq.~17!, we have

an12~k1!2an~k1!5~2e1e2!an~k1!1Nn112~11e!Nn .

If the nonlinearity is confining, that is if the sign ofNn11
2(11e)Nn is the negative of the sign ofan , the nonlinear-
ity saturates the growth of the modes. Further, if the fix
point an125an of the above equation is stable, we have
stable period-2 solution and the time scale on which the
plitudes saturate is of the order oft'1/e. If, on the other
hand, the nonlinearity is not confining, the amplitudes w
grow rapidly until they are saturated by higher order nonl
earities.

Since we are looking for period-2 solutions close to ons
we will assume that the nonlinearity is confining and t
mode amplitudes saturate to give a stable period-2 peri
state. At saturation,an(k) can be expressed asan(k)
5(21)nc(k)1d(k). This suggests that we describe the a
plitude an(k1) with uk1u5k0 for all n by

an~k1!5~21!ncn~k1!1dn~k1!, ~20!

where the amplitudescn and dn depend on the slow time
scaleen, that is, they only vary on time scales of the order
t51/e.

We will now look at the modes withzuku2k0z.1/l . Equa-
tion ~14! implies thata(k)>211m for this case. Ifa.
211m with 0,m,1, uaup!1 for p>1/m. Therefore, for
long timesn, the solutionan in Eq. ~19! relaxes on a time
scale shorter than 1/m, and is essentially determined by th
inhomogeneous~forcing! term f m for n2m21,m,n.

Note that, sufficiently close to onset, the time scalem21 is
much smaller thant. Consequently, Eq.~20! show that the
amplitudesc and d are essentially constant over the tim
scales on which the mode amplitudesan(k) with uuku2k0u
.1/l evolve. Also, note thata, the amplitude of the mode
with uku5k0 , is given bya;e1/(p21) and this is small close
to onset. Therefore, we can expand all the mode amplitu
in powers ofe and, close to onset, it suffices to keep the te
with the smallest power.

We will now formally carry out this procedure of keepin
the terms with the smallest powers ofe in the evolution of
each modean(k). Let C1#C denote the set of all the mode
kmPC with ukmu5k0 . Then kPC1 implies that2kPC1 .
Also, let C2#C denote the set of all the modeskmPC
2C1 with I b(k i1k j2km)51, wherek i , k jPC1 . kPC2 im-
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plies that2kPC2 . For the modes inC2 , to the lowest order
in the mode amplitudes of the modes inC1 @Eq. ~16!# gives,

an11~k!5a~k!an~k!1b f̄ ~ uku!

3(
k1

(
k2

I b~k11k22k!an~k1!an~k2!,

where the summations are now restricted tok1PC1 andk2
PC1 . From the discussion above, the mode amplitud
an(k i) for k iPC1 vary on time scales much longer than th
time scale@12ua(k)u#21 for kPC2 . Therefore, using the
expression in Eq.~20!, we can solve the above differenc
equation to obtain

an~k!5b f̄ ~ uku!(
k1

(
k2

I b~k11k22k!

3S cn~k1!cn~k2!1dn~k1!dn~k2!

12a~k!

1
~21!n@cn~k1!dn~k2!1dn~k1!cn~k2!#

11a~k! D .

Sincea(k)5l(r ) f (uku), only depends onuku, we can sim-
plify the above expression by defining

ḡ6~k!5
b f̄ ~k!

16l~r ! f̄ ~k!
.

With these definitions, we have

an~k!5(
k1

(
k2

I b~k11k22k!

3$ḡ2@~ uku!~cn~k1!cn~k2!1dn~k1!dn~k2!#

1~21!nḡ1~ uku!@cn~k1!dn~k2!1dn~k1!cn~k2!#%.

~21!

Note the following features about the solution for the mo
amplitudesan(k) for kPC2 given by Eq.~21!.

~1! The mode amplitudesan(k) for kPC2 are completely
determined by the amplitudes for the wave vectors inC1 ,
that is they areslavedto the amplitudesan(k i) for k iPC1 .

~2! If c, d;e1/(p21), for all kPC2 , we havean(k);(c2

1d2);e2/(p21). Therefore, the mode amplitudes forkPC2
are higher order ine than the mode amplitudes of the wav
vectors inC1 .

~3! If cn and dn saturate to constant values, the mo
amplitudes for allkPC2 saturate to a period-2 state.

We can extend the above construction as follows. Ifk
PC, we define deg(k) to be the smallest integerm such that
~1! m1 ,m2 ,...,mq are positive integers with

m11m21¯1mq5m,

and ~2! there exist wave vectorsk1 ,k2 ,...,kqPC1 such that

I b~m1k11m2k21¯1mqkq2k!51.
2-13
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A similar analysis to the one carried out above will show th
if deg(k)5m>3, the mode amplitudean(k) is completely
determined by the mode amplitudes of the modes inC1 , it is
of a higher order ine with an(k);em/(p21), and it will as-
ymptote to a period-2 solution if the mode amplitudes inC1
do so. Note that this justifies the claim that we made at
beginning of this section, that the modes with the larg
amplitudes haveuku5k0 . To solve for the mode amplitude
of the modes inC1 , we will substitute the expressions in E
~21! in Eq. ~16! with kPC1 , keep the linear terms as well a
the terms that are the lowest order in the nonlinearity, a
solve the resulting equations for the mode amplitudes.

We have now reduced the problem of finding the patt
selected in the nonlinear regime to an appropriate speci
tion of the setC1 , and to solving Eq.~16! for the amplitudes
of these modes. In the rest of this section, we will consi
various choices forC1 , and we will work out the pattern
selection in each case.

A. Single dominant mode

We first consider the simplest case, namely, that o
single dominant modek, so thatC15$k,2k%. In this case,
we can suppress the dependence onk and define cn
5cn(k), dn5dn(k). Then, Eq.~20! along with the fact that
j is real gives

an~k!5~21!ncn1dn , an~2k!5~21!ncn* 1dn* .

Using these expressions in Eq.~21! yields

an~0!52ḡ2~0!~ ucnu21udnu2!

12~21!nḡ1~0!~cndn* 1dncn* !,

an~2k!5ḡ2~2k0!~cn
21dn

2!12~21!nḡ1~0!cndn , ~22!

an~22k!5ḡ2~2k0!~~cn* !21~dn* !2!12~21!nḡ1~0!cn* dn* ,

From Eq.~16!, we obtain

an11~k!52~11e!an~k!12b f̄ ~k0!an~0!an~k!

12b f̄ ~k0!an~2k!an* ~k!13guan~k!u2an~k!,

~23!

where we have kept all terms up to orderan(k)3. Using the
expressions in Eq.~22! in Eq. ~23!, and collecting all the
terms that have a time dependence of the form (21)n, we
obtain

cn115~11e!cn22b f̄ ~k0!@2ḡ2~0!~ ucnu2cn1udnu2cn!

1ḡ2~2k0!~ ucnu2cn1udnu2cn* !12ḡ1~0!

3~ udnu2cn1dn
2cn* !12ḡ1~2k0!cnudnu2#

13g~ ucnu2cn12udnu2cn1dn
2cn* !. ~24!

This equation can be written
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cn112cn5ecn1N~cn ,dn!,

where the nonlinear term is homogeneous of degree 3
that N;ap with p53. It is clear that in the initial stages,cn
grows exponentially on the time scaleen. If the nonlinearity
is confining, we see that the amplitude forc will saturate at
c;e1/(p21)5e1/2.

Using the expressions in Eq.~22! in Eq. ~16!, and collect-
ing all the terms without a time dependence of the for
(21)n, we obtain

dn1152~11e!dn1N8~cn ,dn!,

where the nonlinearity is again homogeneous of degre
Note that, in this case, there is no nonzero solution of t
equation that evolves on the slow time scaleen. Another
way to see this is to note that there are no solutions
dn115dn with d;e1/2 and any such solution will havedn
;O(1). Therefore, if the nonlinearity is confining, the on
consistent solution isdn50.

If we derive the equation fordn on the slow scaleen
rigorously using an averaging procedure and the appropr
solvability conditions@34#, we obtain

dn115
N8~cn ,dn!

2

for all n and d050. SinceN8(c,d)50 for d50, it follows
that dn50 for all n. Using this, and definingns by

ns52b f̄ ~k0!@2ḡ2~0!1ḡ2~2k0!#23g. ~25!

we can rewrite Eq.~24! as

cn115~11e!cn2nsucnu2cn .

If ns.0, we see thatcn will grow until it saturates at

cnhst5S e

ns
D 1/2

eif,

wheref5arg(c0) is an arbitrary phase angle. Note that t
amplitude has the expectede1/2 behavior. Linearizing abou
c5hst we see that

cn115~122e!cn12ehst

Therefore, fore,1/2 the fixed pointcn5hst is stable. Fur-
ther, the solutioncn relaxes to this value exponentially on
time scale 1/(2e);t, justifying our earlier claim that the
dynamics of the mode amplitudean(k) is on a time scalet
over both the growth stage and the saturation stage.

The periodic pattern corresponding to this solution is
period-2 stripe given by

jn~x!5j* 1~21!nS e

ns
D 1/2

@ei ~k•x1f!1e2 i ~k•x1f!#1O~e!.

~26!

We will conclude our discussion of the case of a sing
dominant mode with a few remarks.
2-14
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~1! From Eqs.~23! and ~22!, we see thatan(k)→2an(k),
an(0)→an(0), and an(2k)→an(2k) are exact symmetrie
of this system of equations to this order. In fact, if we s
C5$nkunPZ% and expand the map to arbitrary orders inj
2j* @cf. Eq. ~15!#, we can show that

an~k1!→~21!deg~k1!an~k1!

is an exact symmetry of the system.
~2! Combining the above symmetry along with the d

crete time translation symmetryan(k1)→an11(k1), we see
that an exact symmetry of the system is

cn~k1!→~21!deg~k1!11cn~k1!,

dn~k1!→~21!deg~k1!dn~k1!.

If the nonlinearity is confining, so that we expect a soluti
with small amplitudes ase→0, then the solution is invarian
under the above transformation, that iscn(k1)50 if deg(k1)
is even anddn(k1)50 if deg(k1) is odd. It is also true tha
any solution that evolves from an initial state that is close
a spatially homogeneous state will have these properties

~3! The symmetries noted in remarks~1! and ~2! above
are a reflection of the fact that, forC5$nkunPZ%,

I b~m1k16m2k26¯6mqkq!51,

with k1 ,k2 ,...,kqPC, implies that

m1 deg~k1!1m2 deg~k2!1¯1mq deg~kq!

is even. This, along with Eq.~16! directly implies the claims
in remark~1!.

~4! The lowest order of the nonlinearities in Eq.~23! com-
ing from the terms withan(0) and an(2k) is an(k)3. Con-
sequently, in order to keep consistency and retain all term
this order, we have to expand the nonlinear map in Eq.~15!
to the third order.

~5! The explicit form of the stripe solution in Eq.~26!
displays the time and space translation invariances, the r
tional invariance, and the invariance under reflections of
set of all stripe solutions. We can use the translation inv
ance to choose a solution wheref50, so thatc is real.

B. Two dominant modes

We now consider the case where there are two domin
modesk1 and k2 so thatC15$k1 ,k2 ,2k1 ,2k2%. In this
case, we haveC5$m1k11m2k2um1 ,m2PZ%.

Due to the symmetries of the system under rotations
reflections, we have the freedom to relabelk2 as 2k2 .
Therefore, we can always choosek1 and k2 such thatu
5cos21(uk1•k2u/k0

2) is in the range@0, p/2#. By the symme-
tries of the system,C is completely characterized by th
angleu.

For the two dominant modes assumption to be consist
we need thatuum1k11m2k2u2k0u.1/l unless um1u1um2u
51. This will be true foruP@p/312/l ,p/2#, and we will
always chooseu in this range.

If u is chosen in this range,C has the property that
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I b~m1k16m2k26¯6mqkq!51.

k1 ,k2 ,...,kqPC implies that

m1deg~k1!1m2 deg~k2!1¯1mq deg~kq!

is even. As in Sec. IX A, this implies that

an~k!5~21!ncn~k!

if deg(k) is odd, and

an~k!5dn~k!

if deg(k) is even, for a solution that evolves from an initi
condition that is close to being spatially homogeneous.

For C15$k1 ,k2 ,2k1 ,2k2% and C25$0,k11k2 ,k1
2k2 ,2k12k2 ,2k11k2,2k1,2k2 ,22k1 ,22k2%, Eq. ~21!
yields

an~0!52ḡ2~0!@ ucn~k1!u2ucn~k2!u2#,

an~k11k2!52ḡ2@2k0 cos~u/2!#cn~k1!cn~k2!,

an~k12k2!52ḡ2@2k0 sin~u/2!#cn~k1!cn* ~k2!, ~27!

an~2k1!5ḡ2~2k0!cn
2~k1!,

an~2k2!5ḡ2~2k0!cn
2~k2!,

and the amplitudes of the other modes inC2 are obtained by
complex conjugating the appropriate expression from the
above. From Eq.~16!, we obtain

an11~k1!52~11e!an~k1!12b f̄ ~k0!@an~0!an~k1!

1an~2k1!an* ~k1!1an~k11k2!an* ~k2!

1an~k12k2!an~k2!#13guan~k1!u2an~k1!,
~28!

an11~k2!52~11e!an~k2!12b f̄ ~k0!@an~0!an~k2!

1an~2k2!an* ~k2!1an~k21k1!an* ~k1!

1an~k22k1!an~k1!#13guan~k2!u2an~k2!,

where we retain all terms up to orde
max@uan(k1)u,uan(k2)u#3.

Definenc by

nc54b f̄ ~k0!$ḡ2~0!1ḡ2@2k0 sin~u/2!#

1ḡ2@2k0 cos~u/2!#%. ~29!

Note thatnc is a function ofu. Using this definition, the
definition of ns in Eq. ~25!, the fact that an(ki)
5(21)ncn(ki) for i 51 and 2, and simplifying the results o
substituting Eq.~27! into Eq. ~28!, we obtain

cn11~k1!5~11e!cn~k1!2@nsucn~k1!u2

1ncucn~k2!u2#cn~k1!.
2-15
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The equation forcn(k2) is obtained from the above equatio
by the symmetry transformationsk1→k2 and k2→k1 . To
simplify the notation, we setxn5cn(k1)e2 if1 and yn
5cn(k2)e2 if2, where f15arg@c0(k1)# and f2
5arg@c0(k2)#. xn andyn are real for alln, and they obey the
equations

xn115~11e!xn2~nsxn
21ncyn

2!xn ,
~30!

yn115~11e!yn2~nsyn
21ncxn

2!yn .

If ns.0, ns1nc.0, the amplitudesxn andyn will grow on
the slow scaleen and then saturate.

We will first determine all the fixed point of the system
Eq. ~30!. The fixed points of the system forncÞns are the
origin (x,y)5(0,0), thestripe solutions

~x,y!5~6hst,0!, ~x,y!5~0,6hst!,

and therhombus solutions

~x,y!5~6hrh6hrh!,

where

hrh5S e

nc1ns
D 1/2

.

If nc5ns , the fixed points are the origin~0, 0! and all the
points on the circle

x21y25
e

ns
5

2e

ns1nc
.

The fixed point at~0, 0! has two unstable directions. Se
ting y050 will bring us back to the case of one domina
mode, which was considered in Sec.~IX A !. In this case,
yn50 for all n showing thaty50 is an invariant manifold
for the dynamics. From the discussion in Sec. IX A, we kn
that the solution converges to the stripe solution that is gi
by a fixed point wherex5hst andy50. We can now check
for the stability of this state to perturbations which introdu
a second mode. Linearizing about this fixed point, we obt

dxn115~122e!dxn ,

dyn115S 11e
ns2nc

ns
D dyn ,

Consequently, the stripe solution is stable to the introduc
of a second mode ifnc /ns.1. Also, as we vary the param
eters, it will first become unstable to a mode correspond
to the angleu with the smallest value ofnc /ns . The eigen-
value for perturbations in the directiondyn50 is ls51
22e, and the eigenvalue corresponding to the direct
dxn50 is given by

l15S 11e
ns2nc

ns
D

04620
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We can also look at solutions withx05y0 . These solu-
tions havexn5yn for all n, so that the linex5y is also an
invariant manifold for the system. The evolution ofxn is then
given by

xn115~11e!xn2~ns1nc!xn
3.

If nc1ns.0, the amplitudes will grow and saturate at

x5y5hrh5S e

ns1nc
D 1/2

.

We can check for the stability of this state to perturbatio
which makexnÞyn . Linearizing about this fixed point, we
obtain

dxn115S 12
2nse

ns1nc
D dxn2

2nce

ns1nc
dyn ,

dyn115S 12
2nse

ns1nc
D dyn2

2nce

ns1nc
dxn .

From this, we see that this fixed point has an eigendirec
dyn52dxn yielding the eigenvalue

l25S 112e
nc2ns

nc1ns
D .

This yields instability~stability! if nc.ns (nc,ns). The ei-
genvalue corresponding to the directiondyn5dxn is ls51
22e, so that the fixed point is always stable to perturbatio
with dx5dy.

Finally, we consider the circle of fixed points in the ca
ns5nc . In this case,x05py0 implies thatxn5pyn for all n
and all p. Therefore, all the raysx5py are invariant under
the dynamics. The evolution ofxn is given by

xn115~11e!xn2~ns1p22nc!xn
3

5~11e!xn2~11p22!nsxn
3.

The amplitudes will therefore grow and saturate at

x5py5pS e

~11p2!ns
D 1/2

,

In this case, the circle of fixed points are stable to pertur
tions that move~x,y! off the circle, i.e., perturbations in th
directiondxn5pdyn with an eigenvaluels5122e, but the
directiondyn52pdxn along the circle is a neutral direction

We summarize the results of this analysis in the ph
portraits in Fig. 12. Figure 12~a! depicts the dynamics for the
casens5nc . The circle of fixed points is an invariant man
fold for the dynamics. Ife,1/2, the eigenvalue in the stabl
direction ls5122e.0. In this case, points that start ou
inside the circle of fixed points remain inside it on iteratin
the in Eq.~30!. xn and yn increase monotonically and satu
rate at the fixed pointx5py5pAe/@(11p2)ns#, where p
5x0 /y0 , and the corresponding pattern is given by
2-16
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jn~x!5j* 1~21!nS e

ns@ uc0~k1!u21uc0~k2!u2# D
1/2

3@c0~k1!eik1•x1c0* ~k1!e2 ik1•x1c0~k2!eik2•x

1c0* ~k2!e2 ik2•x#1O~e!. ~31!

The circle of fixed points for the casens5nc persists as
an invariant manifold even whenncÞns . It now becomes
orbits connecting the stripe solutions (x,y)5(6hst,0) and
(x,y)5(0,6hst), with the rhombus solutions (x,y)5
(6hrh ,6hrh). The eigenvalues for the linearization near t
stripe solution arels5122e and l1511e(ns2nc)/ns .
The eigenvalues for the linearization near the rhombus s
tion arels5122e andl15112e(nc2ns)/(nc1ns).

Figure 12~b! depicts the dynamics for the casens,nc .
For sufficiently smalle,1/2 andns,nc , we have 0,ls
,1, 0,l1,1, andl2.1. The stripe solution is therefor
stable, and the rhombus solution has one unstable direc
Since all the eigenvalues are positive, the map in Eq.~30!
maps regions bounded by invariant curves into themsel
In Fig. 12~b!, we show the region bounded by the invaria
curves x50 and y50 and the unstable manifold of th
rhombus solutionx5y5hrh . It is clear that all initial condi-
tions such thatx0.y0.0 lead to solutions that asymptote
x5hst andy50. Similarly, initial conditionsy0.x0.0 lead
to solutions that asymptote toy5hst and x50. The
asymptotic pattern is a stripe pattern and it is described
Eq. ~26!.

Figure 12~c! is the phase portrait whenns.nc.0, and
Fig. 12~d! is the phase portrait fornc,0, ns1nc.0. For
sufficiently small e,1/2 and ns.nc , we have 0,ls,1,
l1.1, and 0,l2,1. The stripe solution is unstable to th
rhombus solution in both these regimes. All the eigenval
are again positive and regions bounded by invariant cur
map into themselves by Eq.~30!. Figures 12~c! and 12~d!,

FIG. 12. Schematic phase portraits for the system in Eq.~30! in
various parameter regimes.~a! ns5nc . ~b! ns,nc . ~c! ns.nc

.0. ~d! 2ns,nc,0. The dashed line in~a! is a circle of fixed
points.
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show the region bounded by the invariant curvesx50 and
y50, and pieces of the unstable manifolds of the stripe
lutions x5hrh , y50, andx50, y5hrh . In this case, all ini-
tial conditionsx0.0 andy0.0, with x0 andy0 small, lead
to solutions that saturate atx5y5hrh . The rhombus solution
is given by

jn~x!5j* 1~21!nS e

ns1nc
D 1/2

@ei ~k1•x1f1!1e2 i ~k1•x1f!

1ei ~k2•x1f2!1e2 i ~k2•x1f2!#1O~e!, ~32!

where f15arg@c0(k1)# and f25arg@c0(k2)#, as defined
above. The difference between the regimes 0,nc,ns and
2ns,nc,0 are in the transient growth stage and we w
consider this below.

In our discussion up to this point, we have assumed t
the angleu, which determinesC, has been given. In order t
completely describe the patterns with two dominant mod
we therefore need to consider the question of what fac
determine the angleu. In this connection, we will make the
following observations.

~1! When the stripe state goes unstable on varying par
eters, an instability occurs whenns crosses from fromns
,nc to ns.nc . Consequently, the first additional mode th
goes unstable corresponds to au with the smallest value of
nc .

~2! From the dynamics in Eq.~30!, we see that

xn115~11e2nsxn
22ncyn

2!xn ,

and a similar equation is obeyed byyn . In the initial stage,
wherexn and yn are much smaller thanO(Ae), the initial
growth rate is 11e, independent ofnc and consequently o
u. However, once the modes grow so thatxn ,yn;O(Ae), it
is clear that the mode with the largest ‘‘nonlinear’’ grow
rate is the one for whichnc takes on its smallest possibl
value. Consequently, if we start from an initial state that i
small random perturbation of a spatially uniform state a
we are in a parameter regime wherens.nc , so that the
rhombus solution is stable, we expect that the dynamics
select a rhombus solution with wave vectorsk1 andk2 such
that the angleu minimizesnc .

~3! In a parameter regime where 0,nc,ns , we see from
Eq. ~24! that the dynamics of a stripe pattern is given by

xn115~11e2nsxn
2!xn .

Sincenc.0, the two preceding equations imply that the no
linear growth rate for the stripe solution is larger than that
the rhombus solution. However, the parameters are such
the stripe is unstable. Therefore, in this regime, we expec
initial transient where the pattern evolves so that it looks l
a stripe solution, i.e.,yn'0 andxn will increase and saturate
The solution will then evolves to the rhombus solution tha
asymptotically stable. If, however,nc,0, but ns.2nc so
that ns1nc.0, the nonlinear growth rate for the rhombu
solution is larger. Therefore, in the initial transient growt
2-17
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the solution will look like a rhombus solution, i.e., the sol
tion will quickly becomexn'yn after which both the mode
will grow till they saturate.

~4! The preceding discussion invoking the concept o
‘‘nonlinear’’ growth rate is not rigorous. However, in thi
case we can justify the conclusions rigorously. In the regi
where the rhombus solution is stable, the eigenvalues for
linearized dynamics near the fixed point (x,y)5(hrh ,hrh)
are ls5122e and l25122e(ns2nc)/(ns1nc). Asymp-
totically, the solutionsxn and yn will approach the fixed
point along the direction corresponding to the less sta
~larger! eigenvalue. Consequently, fornc.0, ls,l2 , so that
the solutions approach the fixed point along the eigendi
tion corresponding tol2 , the unstable manifold of the strip
solution. Therefore, the evolution of an arbitrary small init
condition will consist of a transient growth phase where
solution approaches the stripe fixed point as illustrated
Fig. 12~c!. For nc,0, l2,ls and the solutions approach th
fixed point along the invariant manifoldx5y, as illustrated
in Fig. 12~d!, and there is no transient stripe.

From the above remarks, we expect that the value ou
selected corresponds to the smallest value ofnc . From Eq.
~29! it follows that nc is symmetric underu→p2u, imply-
ing that

dnc

du
50

at u5p/2. Therefore, generically, there is a codimensi
zero set of parameter values such thatnc attains its minimum
at u5p/2, corresponding to the formation of square patter
Hence we expect that there are typical systems for wh
square patterns form generically~i.e., without any fine tuning
of parameters!.

We conclude our discussion of patterns with two dom
nant modes by discussing the nature of the transition
tween nonzero amplitude stripes and squares~or in general
rhombi! at ns5nc . In the context of the two mode descrip
tion of both these patterns, away from onset, this transitio
first order~discontinuous! since a state with one mode am
plitude being zero~the stripe solution! goes to a state with
both modes having equal and nonzero amplitudes~the square
or rhombus solution!. However, contrary to what one woul
expect for a first order transition, this transition is not hy
teretic. Both stripe to square~rhombus! and square~rhom-
bus! to stripe transitions occur atns5nc . This is a conse-
quence of the existence of a continuous family
intermediate solutions~the circle of fixed points atns5nc!
connecting the stripe and the square~rhombus! solutions.

Although the transition is nonhysteretic, if we look
asymptotic states it will be effectively hysteretic if we on
look at the evolution of the system for finite time interva
For ns.nc , where the stripe solution is unstable, the u
stable eigenvalue is given byl1511e(ns2nc)/ns . Also,
for ns,nc , where the square~rhombus! solution is unstable,
the unstable eigenvalue isl25112e(nc2ns)/(nc1ns).
Therefore, the time for the transition between the two sta
is given by
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where lu is the relevant unstable eigenvalue andn5(ns
1nc)/2'ns'nc near the transition. Consequently, if w
evolve the solution for a finite timeT andT!tL , we will be
in a regime where both the stripe and the square~rhombus!
solutions appear to be stable over this time scale. This
plains why we see a region with coexisting squares a
stripes in the phase diagram~Fig. 4!. From the above con-
siderations, it is clear that the width of this region in para
eter space will decrease as the length of the run is increa
and if p is a typical parameter, the width of the coexisten
region Dp, is given by the requirementT/tL;1, and we
therefore predict thatDp will scale with T, the length of the
run, and the supercriticalitye as

Dp;uns2nu;
uns2ncu

n
;~eT!21.

C. Hexagons near onset

To study hexagonal patterns, we consider the case of t
dominant modesk1 , k2 , and k3 , with uk1u5uk2u5uk3u
5k0 , and the angles between any pair of these vectors b
2p/3. This implies that

k11k21k350.

In this case,C15$k1 ,k2 ,k3 ,2k1 ,2k2 ,2k3%. Since k1
1k252k3 and deg(k1)5deg(k2)5deg(k3)51,

I b~m1k16m2k26¯6mqkq!51,

with k1 ,k2 ,...,kqPC, does not imply that

m1 deg~k1!1m2 deg~k2!1¯1mq deg~kq!

is even, in contrast to the cases with one or two domin
modes. Consequently, we can no longer assume thatan(k)
5cn(k) if deg(k) is odd andan(k)5dn(k) if deg(k) is
even.

We haveC25$0,62k1 ,62k2 ,62k3 ,6(k12k2),6(k2
2k3),6(k32k1)%. We can obtain expressions for the am
plitudes of the modes inC2 using Eq.~21!, and we do this in
Appendix A. For our purposes, it suffices to consider t
homogeneity and the symmetries of the expressions tha
obtained@see Eq.~A1!#. If qPC2 , we have the following

~1! The lowest order terms in the expressions forcn(q)
and dn(q) are quadratic in$cn(k i),dn(k i)%, i P$1,2,3% ~the
amplitudes of the modes inC1!.

~2! dn(q) is invariant under the transformationdn(k i)
→dn(k i),cn(k i)→2cn(k i), which is equivalent to saying
that dn(q) is invariant ~even! for time translations by one
time step.

~3! cn(q)→2cn(q) under the transformationdn(k i)
→dn(k i),cn(k i)→2cn(k i), which is equivalent to saying
that cn(q) changes sign~is odd! under time translations by
one time step.
2-18
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~4! If the amplitudes$cn(k i),dn(k i)%, i P$1,2,3% are real,
dn(q) andcn(q) are also real.

From Eq.~16!, we obtain

an11~k1!52~11e!an~k1!12b f̄ ~k0!@an* ~k2!an* ~k3!

1an~0!an~k1!1an~2k1!an* ~k1!

1an~k12k2!an~k2!1an~k12k3!an~k3!#

13guan~k1!u2an~k1!, ~33!

where we retain all terms up to orde
max@uan(k1)u,uan(k2)u,uan(k3)u#3. The expressions fo
an11(k2) andan11(k3) can be obtained from the above e
pression by cyclically permutingk1 , k2 , andk3 . Note that
the expression on the right hand side of Eq.~33! has a term
an* (k2)an* (k3) that is quadratic in the amplitudes of th
modes inC1 , in contrast to the corresponding expressio
for the case of one dominant mode in Eq.~23! and two
dominant modes in Eq.~28!, which are both cubic in the
amplitudes of the modes inC1 .

We will look for fixed points corresponding to hexagon
patterns, that is, for solutions withan(k1)5an(k2)
5an(k3), dn11(k1)5dn(k1)5d and cn11(k1)52cn(k1)
5(21)n11c. Further, we will require thatd andc are real,
which is a consistent requirement, since if the amplitudes
real at time stepn, they will stay real in the subsequen
evolution. Substituting this ansatz in Eq.~33!, and separating
the terms with and without a time dependence of the fo
(21)n, we obtain

d52~11e!d12b f̄ ~k0!~d21c2!1Ne~c,d!,
~34!

c5~11e!c24b f̄ ~k0!cd1No~c,d!,

whereNe and No are of degree 3 in$c,d%, Ne is even in
c@Ne(2c,d)5Ne(c,d)#, and No is odd in c@No(2c,d)
52No(c,d)#.

From the first equation, we obtain

d5
2b f̄ ~k0!~d21c2!1Ne~c,d!

21e
.

Since we are looking for solutions such thatc,d→0 as e
→0, it follows thatd2!udu for small e. Also, Ne(c,d) is of
degree 3 and is even inc, so thatNe(c,d)5(b1c21b2d2)d
whereb1 and b2 haveO(1) ~finite! limits b̄1 and b̄2 as e
→0. Consequently, for smalle, to lowest order we have

d5b f̄ ~k0!c2.

Substituting this into the second equation, we have

c5~11e!c24b2@ f̄ ~k0!#2c31No~c,d!.

Since No(c,d) is of degree 3 and is odd inc, No(c,d)
52(b3c21b4d2)c, whereb3 and b4 haveO(1) limits b̄3

and b̄4 as e→0. Sinced5O(c2), to lowest order ine, we
have
04620
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ec5~4b2@ f̄ ~k0!#21b̄3!c3,

so that

c5S e

4b2@ f̄ ~k0!#21b̄3
D 1/2

and

d5
b f̄ ~k0!e

4b2@ f̄ ~k0!#21b̄3

.

We will now look at the dynamics of patterns with thre
modes, that are described by Eq.~33!. Based on the above
analysis, we will assume that the amplitudesan are real, and
that cn;O(Ae) and dn;O(e). Using this ansatz in Eqs
~33! and ~A1!, keeping terms to the lowest order ine, and
looking for solutions that evolve on the slow scaleen, we
obtain the equations

dn11~k1!5b f̄ ~k0!cn~k2!cn~k3!,
~35!

cn11~k1!5~11e!cn~k1!2@nscn
2~k1!1nhcn

2~k2!

1nhcn
2~k3!#cn~k1!,

wherens is as defined in Eq.~25! and

nh54b f̄ ~k0!@ ḡ2~0!1ḡ2~)k0!1b f̄ ~k0!#. ~36!

The equations for the amplitudesan(k2) andan(k3) can be
obtained from Eq.~35! by cyclically permutingk1 , k2 , and
k3 .

Equation~35! was obtained by making a scaling ansa
for the amplitudes and keeping the lowest order terms.
derive it rigorously using the method of multiple time scal
@34# and an averaging procedure in Ref.@33#.

If we set xn5cn(k1), yn5cn(k2), and zn5cn(k3), we
have

xn115~11e!xn2~nsxn
21nhyn

21nhzn
2!xn ,

yn115~11e!yn2~nsyn
21nhxn

21nhzn
2!yn , ~37!

zn115~11e!zn2~nszn
21nhxn

21nhyn
2!zn .

If ns.0,ns12nh.0, the amplitudesxn , yn andzn will grow
on the slow scaleen and then saturate.

We will now determine all the fixed points and their st
bility. The origin (x,y,z)5(0,0,0) is unstable and has thre
unstable eigenvalues, all equal to 11e.

The stripe solutionsare obtained by setting two of th
amplitudes, sayyn andzn equal to zero. This is an invarian
manifold for the system. Settingyn50 and zn50 reduces
the system to the case considered in Sec. IX A. A stripe fi
point is given byx5hst,y5z50. Linearizing Eq.~37! about
this fixed point, we obtain
2-19
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dxn115~122e!dxn ,

dyn115S 11e
ns2nh

ns
D dyn ,

dzn115S 11e
ns2nh

ns
D dzn .

The eigendirectiondyn5dzn50 has an eigenvaluels51
22e and is always stable. The eigendirectionsdxn5dzn
50 anddxn5dyn50 both have the eigenvalue

l1511e
ns2nh

ns
.

Consequently, the stripe solutions are stable ifnh.ns , and
are unstable otherwise.

We can also look at solutions withx05y0 and z050.
These solutions havexn5yn andzn50 for all n, so that the
line wherex5y and z50 is also an invariant manifold fo
the system. The evolution ofxn is then given by

xn115~11e!xn2~ns1nh!xn
3.

Since nh1ns.0 from the assumptions thatns.0 and ns
12nh.0, the amplitudes will grow and saturate at

x5y5hrh5S e

ns1nh
D 1/2

.

Linearizing Eq.~37! about this fixed point, we obtain

dxn115S 12
2nse

ns1nh
D dxn2

2nhe

ns1nh
dyn ,

dyn115S 12
2nse

ns1nh
D dyn2

2nhe

ns1nh
dxn ,

dzn115S 11e
ns2nh

ns1nh
D dzn .

Calculating the eigenvalues and the eigenvectors about
fixed point, we see thatdxn5dyn and dzn50 are always
stable directions, and the corresponding eigenvalues isls
5122e. The directionsdxn52dyn and dzn50 have an
eigenvalue

lp5112e
nh2ns

ns1nh
,

and the directiondxn5dyn50 has an eigenvalue

l'511e
ns2nh

ns1nh
.

Sincelp.0 for nh.ns and l'.0 for ns.nh generically,
there is no range of parameter values for which the rhom
solutions are stable.
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If x05y05z0 ,xn5yn5zn for all n, so that the linex5y
5z is an invariant manifold for the system. In this case,xn
satisfies

xn115~11e!xn2~ns12nh!xn
3.

Sincens12nh.0, the amplitudes will grow and saturate a

x5y5z5hhx5S e

ns12nh
D 1/2

.

Linearizing Eq.~37! about this fixed point and calculatin
the eigenvalues and eigenvectors about this fixed point,
see thatdxn5dyn5dzn is always a stable direction, and th
corresponding eigenvalue isls5122e. The directionsdxn
52dyn ,dzn50 and dxn52dzn ,dyn50 both have the
same eigenvalue

l25112e
nh2ns

ns12nh
.

Therefore, the hexagon solutions are stable whenns.nh .
Finally, we can look at the casens5nh . In this case, there

is a sphere of fixed points given by

x21y21z25
e

ns12nh
.

This sphere includes the stripe, rhombus, and hexagon s
tions, and it gives continuous families of solutions conne
ing the various fixed points. The rhombus solutions are
nerically linearly unstable. The analysis of the bifurcatio
between the stripe and hexagon solutions is similar to
analysis in Sec. IX B. In particular, the bifurcation betwe
these two patterns occurs atns5nh , and is nonhysteretic
However, sincel1 and l2 tend to zero linearly inns2nh ,
for runs of finite lengthT, there will be a region of coexist
ence in the parameter space, whose width is given byDp
;(eT)21.

From the above analysis, we see that the hexagon solu
is given by

jn~x!5j* 1Fb f̄ ~k0!e

ns12nh
1~21!nS e

ns12nh
D 1/2G

3@eik1•x1e2 ik1•x1eik2•x1e2 ik2•x

1eik3•x1e2 ik3•x#1O~e!. ~38!

Although we have exhibited an explicit hexagon soluti
near onset, this is not observed either in the experime
model or in our CCM model. This is a consequence of
fact that the hexagon solution is linearly unstable near
onset of the period-2 patterns. Figure 13 showsnh-ns at
onset (e50) as a function ofkc /k0 for our model.nh-ns is
piecewise constant, because of our choicef(k)5sgn(kc

2

2k2) is a piecewise constant function. Sincenh.ns for all
kc /k0.1, it follows that the hexagon solutions are unstab
close to onset.~Note that this may not be a universal resu
since it depends on the details that are specific to our mod!
2-20
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We expect that hexagons are not observed in the exp
ments, near the onset of period-2 patterns, for a similar
son.

We will conclude our discussion of the hexagon soluti
by looking the symmetry properties of these solutions. In
case of one- and two-mode solutions, using the transla
invariance of the system, we can always make the m
amplitudes real and positive for even iterations. In contr
k11k21k350 implies that the productan(k1)an(k2)an(k3)
is invariant under translations. Consequently, unlike in e
lier cases, we cannot assume that the amplitudes are
Also, even if the amplitudes are real, there are two disti
phases corresponding to the case where the product is
tive and when the product is negative. The case where
product of the amplitudes is positive corresponds to
peaked phase, where, as viewed from above, the pattern
sists of a triangular lattice of peaks. The case where
product of the amplitudes is negative corresponds to the
lular phase, where, as viewed from above, the pattern c
sists of a honeycomblike structure. These two phases
distinct, and one cannot be obtained from the other by tra
lations, rotations, and reflections in the plane.

D. Two frequency forcing

As we observed in Sec. IX C, hexagons are not obser
in the experiment, or in simulations with our model, near
onset of the period-2 patterns. Experimentally, hexagons
observed near the onset of the period-2 patterns, by addi
small subharmonic component with frequencyf 0/2 to the
sinusoidal forcing with frequencyf 0 @12#, breaking the 1/f 0
time translation invariance of the dynamics. Also, hexag
are observed in the experiments, and in our simulations, a
ing as a supercritical bifurcation from the period-2 flat sta
on decreasing the forcing~G in the experiments andr in our
simulations, as illustrated, for example in Fig. 4!. Thus, it
would seem that, breaking the 1/f 0 ~or n→n11! time trans-
lation symmetry of the system, will increase the stability
the hexagon solutions, thereby making them observable

FIG. 13. nh-ns as a function ofkc /k0 at onset (e50).
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We can model the effects of adding a subharmonic co
ponent to the forcing, by making the parameterr in our
model vary periodically with the time indexn as

r n5r 1~21!nr. ~39!

The parameterr is a measure of the subharmonic breaking
the n→n11 time translation invariance~but still giving an
n→n12 time translation invariance!.

In this section, we will consider the crossover between
behavior of the system with ann→n11 time translation
invariance, and the behavior with ann→n12 but non→n
11 time translation invariance. As we discuss in Sec. IX
the relevant small parameter for the regime with time tra
lation invariance is the supercriticality parametere. In order
to study the crossover behavior, it is useful to have a form
lation where we can vary the parameterse and r indepen-
dently, keeping all the other parameters fixed. To achi
this, we modify the definition of our model as

jn8~x!5M @jn~x!,r n#,

jn11~x!5L@jn8~x!#, ~40!

where the nonlinear mapM is given by Eq.~5!. Note that the
time dependence of the quantityr n , will, in general, break
the n→n11 time translation symmetry of our model@35#.
The linear operatorL is given by Eq.~3!, where the spatial
Fourier transform of the kernelf is rotationally invariant, and
is given by

f̄ ~k!5expH g

2 S k

k0
D 2F12

1

2 S k

k0
D 2G J sgn~kc

22k2!. ~41!

We have introduced a parameterg, such that u f̄ (k0)u
5exp(g/4). This is a generalization of the model consider
in the preceding sections, which corresponds to settingg

51. By varyingg, we can varyf̄ (k0) and consequently vary
e, keepingr fixed.

Figure 14 shows the patterns obtained by numerical sim
lations of the system given by Eqs.~39!, ~40!, ~5!, ~3!, and
~41!, starting from small amplitude random initial condition
Note that breaking the time translation invariance giv
stable hexagon patterns, in a parameter regime where st
are otherwise stable, as in the experiments@12#.

FIG. 14. Hexagonal patterns with two frequency forcing. T
parameters arer 51.7, r50.05,r52, and (kc /k0)255.0.
2-21
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We will now analyze the patterns, in the situation whe
the time translation invariance is broken. We begin by loo
ing for a stable period-2 orbit for the dynamics

jn115M ~jn ,r n!,

with r n given by Eq.~39!. If j5j* is a stable fixed point for
the mapM (.,r ), for sufficiently smallr, a stable period-2
orbit is given byjn5j1 for n odd andjn5j2 for n even,
with

j i5j* 2~21! i
M r~j* ,r !

11l~r !
r1O~r2!,

for i 51 and 2, whereMr(j,r ) is the partial derivative ofM
with respect tor, andl(r )5M j(j* ,r ) is as defined in Sec
VIII. We derive this relation in Appendix B@see Eq.~B1!#.

A spatially homogeneous solution for the system is the
fore given by

jn~x!5
j11j2

2
1~21!n

j22j1

2
. ~42!

We need to consider the linearization about this solution
N15M j(j1 ,r 2r) and N25M j(j2 ,r 1r), as we show in
Appendix B @see Eq.~B2!#,

Ni5l~r !1~21! iFM jr2
M jjMr

11l~r !Gr1O~r2!,

where the partial derivatives are evaluated at (j* ,r ). The
stability indexl2 is defined by

l25N1N2 ,

and the symmetry breaking parameterD is defined by

D5
N22N1

N11N2
.

In terms ofl2 andD, we have

Ni5~11~21! iD!F2S l2

12D2D 1/2G ,
for i 51 and 2.N1 , N2→l(r ) asD→0. As we are interested
in the parameter regime close to the onset of period-2
terns, we have to take the negative square root in the ab
equation, sincel(r ) f̄ (k0)521 at onset.

We now consider the evolution of small, spatially varyin
perturbations, about the spatially homogeneous soluti
The supercriticality parametere is given by the growth rate
of the most unstable modes, so that

~11e!25l2u f̄ ~k0!u25l2 exp~g/2!,

and varyingg keeping all the other parameters fixed enab
us to varye. The growth rate for the most unstable mo
now depends on the time indexn, and is given by
04620
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Nnf̄ ~k0!52@11~21!nD#
11e

A12D2

5
2~11e!

A12D2
2~21!n

~11e!D

A12D2
. ~43!

Following a similar procedure to the case of single fr
quency forcing, one can derive the equations for the m
amplitudes with three dominant modes, for two frequen
forcing. Instead of doing this rigorously, we will derive th
appropriate equation from symmetry considerations and
requirement that they reduce to the corresponding~known!
equations for the case of single frequency forcing asD→0.

As in Sec. IX C, we consider the case with three domin
modes with wave vectorsk1 , k2 , and k3 , where k11k2
1k350 and uk1u5uk2u5uk3u50. The amplitudes of these
modes are given byan(k i)5dn(k i)1(21)ncn(k i) for i 51,
2, and 3. Using the expression in Eq.~43!, and

dn11~k i !1~21!n11cn11~k i !'Nn@dn~k i !1~21!ncn~k i !#,

for the linear growth, we obtain the linearized equations

cn11~k i !'
~11e!

A12D2
cn~k i !1Ddn~k1!,

dn11~k1!'2Dcn~k i !2dn~k1!,

by expanding and collecting the terms with and withou
time dependence of the form (21)n, and assuming tha
udnu!ucnu. The full equation for these amplitudes should
invariant under rotations, and under the transformation

D→2D,cn~k i !→2cn~k i !,dn~k i !→dn~k i !.

Also, they should reduce to Eq.~35! asD→0. These require-
ments significantly constrain the possible forms of the eq
tions governing the evolution of the amplitudes. In partic
lar, the lowest order equations for the dynamics of t
amplitudes are given by

dn11~k1!5b f̄ ~k0!cn~k2!cn~k3!1neDcn~k1!,
~44!

cn11~k1!5
~11e!

A12D2
cn~k1!1n fDdn~k2!

1ngDcn~k2!cn~k3!2@nscn
2~k1!1nhcn

2~k2!

1nhcn
2~k3!#cn~k1!.

Note that these equations, as well as expressions forn f and
ng , can be obtained by a rigorous derivation through
multiple-scale analysis@33#. The quantitiesns , nh , b, and
f̄ (k) are as defined earlier. These quantities as well as
quantitiesne , n f , andng depend on the mapM, the linear
operatorL, and the parameterr, but are independent of th
parameterse andD ~more precisely, they have finite nonze
limits ase→0 andD→0!.
2-22
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The solutions for the single frequency forcing were o
tained by the scaling ansatzdn5O(e) andcn5O(Ae). Sub-
stituting this ansatz into Eq.~44!, we see that this scaling i
consistent ifD!Ae. For D@Ae, consistent scalings aredn
5O(D2) and cn5O(D), and there is a crossover betwe
these two scaling regimes whenD;Ae.

In the regimee@D2, the effect of breaking the time trans
lation invariance is negligible, and the behavior of the s
tem is similar to the behavior withD50. In particular, we do
not expect to see stable hexagons in this regime. In cont
for e!D2, the dynamics is dominated by the effects of t
symmetry breaking. In this regime, stable hexagons are
served, as in the experiments@12#.

Figure 15 is a numerically obtained bifurcation diagra
for the transition between stripe patterns and hexagons
function of the supercriticality parametere and the symmetry
breaking parameterD. Note that the results are consiste
with our prediction that the crossover occurs whenD;e1/2.
In the experiments, if the~nondimensionalized! two fre-
quency driving is given by

h~ t !5G sin~2p f 0t !1h sin~p f 0t !,

and the onset of period-2~stripe! patterns is atG5G* , we
have

D;
h

G*
, e;G2G* .

The preceding analysis would predict that the scaling ofh at
the onset of hexagon patterns with two frequency forcing

h;~G2G* !1/2.

We conclude this section with a discussion of the symm
tries of the hexagons that are observed with two freque
forcing. The quantity

FIG. 15. Crossover between the stripe patterns and the h
gons. The dashed line is the theoretical scalingD;e1/2, and the
symbols are numerically obtained values of the parameters a
bifurcation between the stripe patterns and the hexagon patter
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x5Dcn~k1!cn~k2!cn~k3!

is invariant under the transformationD→2D, cn(k i)→
2cn(k i), dn(k i)→dn(k i), which is a symmetry for the dy-
namical equations. Consequently, there are no symmetry
quirements forcinĝx& to be zero, wherêx& is the average
value of x over all the stable solutions for a given set
parameters. This is in contrast to the case of the hexag
with a single frequency forcing, where symmetry requir
ments imply that both the peaked and the cellular phases
equally likely to be observed at any given time indexn, since
the average value of the productcn(k1)cn(k2)cn(k3) has to
be zero by the time translation invariance. If^x& is nonzero,
we could be in a regime where one kind of hexagonal patt
~say peaked on odd oscillations! is stable while the other
kind ~in this case, peaked on even cycles! is unstable. In our
simulations, we are always in this regime, and we have^x&
,0, so that the peaked phase occurs after the iteration
the larger value ofuNu, that is, the larger growth rate.

E. Fronts and localized patterns

Let P(x,n) be an asymptotic stable ‘‘global’’ pattern fo
the dynamics in a certain parameter regime, and letS be the
set of all the solutionsjn(x) that are equivalent toP modulo
the symmetries of the system. IfP is the transformation
group ofS, as we discuss in Sec. VIII,P is a subgroup of
G5Z3R23O(2), the symmetry group for the equation
governing the dynamics. SinceZ is a discrete group,G is not
connected. Consequently,P is not necessarily connected e
ther.

As we argue in Sec. VIII, for long times, the solutio
jn(x) is given by

jn~x!'Sg̃~x,n!@P#,

where Sg is the action of gPP on the patternP, and
g̃(x,n)PP is the field of the local degrees of freedom, th
varies only on time scalesT@t, and, away from the domain
walls, on length scalesl @k0 .

We first consider the case thatP is connected. For any
initial configuration of the local degrees of freedom, it
possible to haveg̃(x,n)→g* for all x asn→` in a continu-
ous fashion@36#. In this setting, we expect that the domai
will coarsen with some domains growing at the expense
the others, until, the patterns asymptotically converges t
global patternSg

*
@P# on the entire domain.

We will now consider the case in whichP is not con-
nected. Since the local degrees of freedom change con
ously on each domain, for allx in a domainD, g̃(x,n) is in
the same component ofP. We consider an initial configura
tion whereg̃(x1,0) andg̃(x2,0) are in different component
of P for points in two different domainsD1 andD2 . We also
assume that the domainsD1 andD2 are large and therefore
contain many points that are at distancesl @k0 from the do-
main boundaries. In this situation, if the stable patternP is
attracting, for sufficiently large domains the dynamics in t
interior of the domain is unaffected by the other domai
and the local degrees of freedom in the interior will not va

a-
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.
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significantly over time. In particular, they always remain in
single component ofP. We call the boundary separating tw
domains afront, as the patterns on either side of the boun
ary correspond to different components ofP.

From our discussion of the symmetries of the vario
period-2 patterned states near onset, we see that any s
~square! solution can be obtained from any other stri
~square! solution by appropriate translations and rotatio
without any time translations or spatial reflections. Since
tations and translations generate continuous groups,P is
connected for these solutions, and fronts do not occur in
period-2 stripes and squares near onset. Although there
be domains of different stripe orientation in the intermedi
regime, we do not have fronts, sinceP consists of a single
component for these patterns. It is observed, both in exp
ments and simulations, that the solution asymptotically c
verges to a ‘‘global’’ stable pattern, that is a pattern whe
the orientations are lined up on the entire region.

For hexagon solutions, the peaked phase cannot be tr
formed into a cellular phase by translations or rotations,
one needs a time translation to generate the set of all
transformations between equivalent hexagon solutions. T
the transformation group for the period-2 hexagon solutio
with single frequency forcing, is disconnected, and cons
of two components. This is also true for stable period-2
mogeneous solutions, which are invariant under time tra
lation by two units but not under time translations by o
unit, so thatP is a disconnected group with two elemen
Thus we expect to see two distinct domains and fronts se
rating these domains, both in the hexagon solutions w
single frequency forcing and in the period-2 homogene
solutions. These fronts are indeed observed in the exp
ments@10,12#, as well as our numerical simulations~see Fig.
3!.

For the case of the two frequency forcing, the dynamic
not invariant under translations by one time step. It is, ho
ever, invariant under translations by two time steps. As
discuss in Sec. IX D, in our simulations stable hexagons
observed in a regime where only one type of hexagon s
tion is stable. We can show that, for this case, the trans
mation groupP is connected. This is reflected in our nume
cal simulations with two frequency forcing, where we do n
observe fronts. This is also true in the experiments with t
frequency forcing@12#.

An implicit assumption underlying our discussion of pa
tern selection has been that there is a unique stable attra
patternP for a given set of parameters in the sense that
two ‘‘global’’ asymptotic stable solutions are related by
symmetry transformation inP#G. This assumption is justi-
fied by our analysis of the various patterns in Sec. VII a
Secs. IX A–IX C, wherein we observe that all transitions b
tween the various patterned states, as well as the onset o
patterned states, are nonhysteretic. A necessary conditio
this to be true is that the period doubling bifurcations of t
mapM should be supercritical. If the period doubling is su
critical, there exist parameter regimes with multiple sta
patterns, and new phenomena are observed in these reg
In particular, with the map in Eq.~9! used in place of the
map in Eq.~5!, there is a parameter regime where period
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squares and the period-1 homogeneous state are both lin
stable. In this regime, as depicted in Fig. 6, we observe
calized, period-2 structures on a homogeneous perio
background, that are similar to the oscillons seen in the
periments @11,12#. These localized structures are distin
from the fronts and domains that we discussed earlier
that, the size of these localized structures is of the orde
k0

21, unlike the domains in patterns with fronts, which had
be of a sizel @k0

21. These states cannot be analyzed us
the weakly nonlinear analysis, of Secs. IX A–IX D, since t
oscillon states do not evolve continuously from a homo
neous state as a parameter is varied. An analysis of th
structures may require a new set of ideas, and it presen
very interesting theoretical challenge.

X. DISCUSSION

The spirit of our model is similar to that of other gener
models of spatiotemporal dynamics@1#, and may be regarded
as lying between continuous time–continuous space mo
~e.g., the Swift-Hohenberg and the complex Ginzbu
Landau equations! and coupled map lattice models@37,38#.
Our approach of choosing a discrete time and a continu
spatial domain, is motivated by the symmetries of a perio
cally forced extended system, namely, a discrete time tra
lation symmetry and a continuous symmetry under spa
translations and rotations. In the context of models for
brated sand experiments, CCM models provide the simp
possible description of temporal period doubling, while
lowing for spatial patterns unconstrained by an imposed g
@39#.

While we have not incorporated any physics specific
granular materials in the construction of our model, t
model captures many features of the bifurcations that
observed experimentally. Further, analysis implies that th
features do not depend sensitively on the exact choices
make for the functionsM (j,r ) and f̄ (k) that define our
model. In this sense, these bifurcation phenomena may
regarded as universal to the class of systems with the foll
ing features.

~1! The system is strongly dissipative, and it can be eff
tively described by one scalar fieldj.

~2! The interactions are not long ranged, and it is me
ingful to talk about a ‘‘local’’ temporal dynamics forj(x) at
any given locationx.

~3! The ‘‘local’’ temporal dynamics undergoes perio
doubling bifurcations as the parameters are varied.

~4! There is pattern formation at a preferred length sca
Our approach then enables us to study the effects of

ditional physical considerations, like the presence of a s
ond length scale~this generically leads to the formation o
square patterns!, breaking thet→t11/f 0 time translation
symmetry~this leads to the stabilization of hexagonal pa
terns! and the effects of hysteresis~this leads to the forma-
tion of oscillons and other localized structures!, and these
can be regarded as universal properties of systems with t
features. In particular, we would also expect to see th
phenomena in other systems besides vibrated granular m
rial.
2-24
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Note that our framework for a CCM model separates
temporal dynamics@Eq. ~1!# and the spatial coupling@Eq.
~2!#. Furthermore, the spatial coupling operator is line
Thus our framework for the CCM model has a special str
ture that is not, in general, present in physical situatio
However, the individual qualitative spatiotemporal bifurc
tions we find are generic in that they persist under sm
changes of the system, e.g., changes that ‘‘mix’’ the tem
ral and the spatial dynamics.

As a second point, we note that a designation of a p
nomenon as ‘‘generic’’ or ‘‘universal’’ does not imply that
always occurs@e.g., for a smooth mapM (x,r ), a single pe-
riod doubling does not necessarily guarantee the occurre
of a full period doubling cascade#. For example, in the cas
of Faraday waves on a vertically vibrated fluid layer, a p
riod doubled homogeneous state is ruled out by incompr
ibility. Thus, when we label a phenomenon as generic
universal, we only require that the phenomenon persist un
small changes of the system~or equivalently the model equa
tions! and not that the phenomena always occur. As an ill
tration, for the case of vibrated granular materials, differ
choices ofM andL in Eqs. ~1! and ~2! may produce phase
diagrams that differ somewhat from Fig. 4.

Finally we wish to emphasize that our model is co
structed so that it is simple. As we pointed out earlier, it c
be generalized in may ways. While our model gives go
qualitative agreement with experiments on vibrated gran
layers, there are certain features of the experiment that
not be captured by our model due to its simplicity. We ha
chosen a scalar field variablej representing the height of th
granular layer to describe the state of the system. Howe
one would expect that the physics of the experimental sys
depends both on the height of the layer, as well as the lo
tion of the bottom of the layer relative to the oscillatin
plate. In particular, our model cannot distinguish between
behaviors represented in Figs. 2~b! and 2~c!, and both these
behaviors appear as period-2 cycles of the map. We there
lose the information that the bottom of the layer hits the pl
only once every two cycles in Fig. 2~c!, unlike in Fig. 2~b!,
where the bottom hits the plate on every cycle. In expe
ments @10–12#, the transition form period-2 patterns t
period-2 flat states on increasingG apparently coincides with
the onset of the layer behavior as in Fig. 2~c!, i.e., the layer
makes contact with the plate once every two oscillat
cycles. If we do the analogous numerical simulation with o
model, namely, we follow a solutions by varying the para
eterr, then the period-2 patterns do not disappear on incre
ing r. Consequently, the transitions between the period-2
terns and the period-2 flat state in our model sho
substantial hysteresis unlike in the experiment. In particu
the phase diagram~Fig. 4! is obtained by starting with a
random initial condition that is close to a homogeneous st
and not by following solutions by continuously varying th
parametersr andkc /k0 .

This discussion would suggest that we can improve
agreement between our model and the experiment by con
ering two scalar fieldsj(x) and h(x) representing the top
and the bottom of the granular layer, using a tw
dimensional map (jn11 ,hn11)5M (jn ,hn ,r ) instead of the
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one-dimensional map in Eq.~5!, and appropriately modify-
ing the spatial coupling to account for the presence of t
fields. We have refrained from doing this, since this wou
make the model considerably more complex. It would a
give us a larger number of undetermined parameters in
maps and in the couplings. While this might yield bett
agreement with the experiments by making proper choice
runs counter to our basic approach, which has been to fin
simple model that explains the dynamical underpinnings
the observed phenomena, that are independent of phy
specific to granular materials. Thus we wish to emphas
that our particular model does not probe the details of
physics of granular materials, but is geared toward find
the universal features of systems where pattern forma
and temporal period doubling interact.

In conclusion, we believe that the CCM approach will
fruitful in the investigation of other systems beside vibrat
granular layers. In this paper, we present a framework for
construction of a CCM model, given certain basic physi
considerations, like dimensional analysis and the symmet
underlying the system. We also give a procedure for
analysis of these models, using truncated modal expans
and the separation of the time scales in the dynamics. T
approach can be extended to other periodically forced
tended systems. In particular, this approach might yield u
ful results in the study of forced, strongly dissipative e
tended systems, e.g., the experiments on vibrated layer
very viscous fluids@40#.
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APPENDIX A: THREE DOMINANT MODES

In the case with three dominant modes,C25$0,62k1 ,
62k2 ,62k3 ,6(k12k2),6(k22k3),6(k32k1)%. Eq. ~21!
yields the following expressions for the mode amplitudes

dn~0!52ḡ2~0!@ ucn~k1!u21ucn~k2!u21ucn~k3!u2

1udn~k1!u21udn~k2!u21udn~k3!u2#,

cn~0!52ḡ1~0!@cn~k1!dn* ~k1!1cn~k2!dn* ~k2!

1cn~k3!dn* ~k3!1dn~k1!cn* ~k1!1dn~k2!cn* ~k2!

1dn~k3!cn* ~k3!#,

dn~k12k2!5ḡ2~)k0!@cn~k1!cn* ~k2!1dn~k1!dn* ~k2!#,
~A1!

cn~k12k2!5ḡ1~)k0!@cn~k1!dn* ~k2!1dn~k1!cn* ~k2!#,

dn~2k1!5ḡ2~2k0!@cn
2~k1!1dn

2~k1!#
2-25
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cn~2k1!52ḡ1~2k0!cn~k1!dn~k1!.

The mode amplitudes for all the modes inC2 can be ob-
tained from the above expressions by complex conjuga
and cyclic permutation.

APPENDIX B: PERIOD-2 FORCING FOR THE MAP

We consider the dynamical system

jn115M ~jn ,r n!,

where

r n5r 1~21!nr,

r is such thatj5j* is a stable fixed point for the ma
M (.,r ) andr is small, i.e.,

uM jr~j* ,r !ru!12ul~r !u.
n

ett

04620
n

We have used subscripts to denote partial derivatives,
l(r )5M j(j* ,r ) is the stability index of the fixed point fo
the mapM (.,r ). We have a period-2 orbitjn5j1 for n odd
andjn5j2 for n even if we have a solution to

j5M @M ~j,r 2r!,r 1r#.

The solution to this equation gives the valuejn for the odd
iterates.j5j* is a solution forr50. Using the implicit
function theorem, we will show that there is a solution clo
to j5j* for sufficiently smallr. Assuming the existence o
a solutionj~r!, we can differentiate the above expression
obtain

dj

dr
5M j@M ~j,r 2r!,r 1r#S M j~j,r 2r!

dj

dr
2Mr~j,r 2r! D

1Mr@M ~j,r 2r!,r 1r#.

Rearranging, we obtain
dj

dr
5

Mr@M ~j,r 2r!,r 1r#2M j@M ~j,r 2r!,r 1r#Mr~j,r 2r!

12M j@M ~j,r 2r!,r 1r#M j~j,r 2r!
.

At r50,j5j* , we haveM j(j* ,r )5l(r ). The above expression then simplifies to give

dj

dr
5

Mr~j* ,r !

11l~r !
.

Since the fixed pointj* is stable,ul(r )u,1, so that the implicit function theorem applies and we have that, fori 51 and 2, and
for sufficiently smallr,

j i5j* 2~21! i
M r~j* ,r !

11l~r !
r1O~r2!. ~B1!

We now consider the stability of this solution. IfN15M j(j1 ,r 2r) andN25M j(j2 ,r 1r), we have

Ni5M j@j i ,r 1~21! ir#5l~r !1M jr~j* ,r !r1M jj

dj i

dr
r1O~r2!

5l~r !1~21! iFM jr2
M jjMr

11l~r !Gr1O~r2!. ~B2!

Therefore,uN1N2u<l(r )2,1 if r is sufficiently small, so that the period-2 orbit is stable.
tt.
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