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We propose that a useful approach to the modeling of periodically forced extended systems is through
continuum coupled mafCCM) models. CCM models are discrete time, continuous space models, mapping a
continuous spatially varying field,(x) from timen to timen+ 1. The efficacy of CCM models is illustrated
by an application to experiments of Umbanhowar, Melo, and SwifiNeyure382, 793 (1996 on vertically
vibrated granular layers. Using a simple CCM model incorporating temporal period doubling and spatial
patterning at a preferred length scale, we obtain results that bear remarkable similarities to the experimental
observations. The fact that the model does not make use of physics specific to granular layers suggests that
similar phenomena may be observed in otfreangranular periodically forced, strongly dissipative systems.

We also present a framework for the analysis of pattern selection in CCM models using a truncated modal
expansion. Through the analysis, we predict scaling laws of various quantities, and these laws may be verifi-
able experimentally.
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I. INTRODUCTION (CML modelg, and cellular automatéCA models. These
classes of models are be distinguished by whether they
Pattern formation is a ubiquitous phenomenon in the dy<hoose to treat the time, space, and field variables as con-
namics of extended nonlinear systef2]. A few examples tinuous or discrete. This is illustrated in Table |, where we
of pattern forming systems are coupled reaction-diffusionalso list a previously rarely used model class, which we call
systems]3], vertically vibrated fluids(Faraday waves[4],  continuum coupled maf€CM) models. In particular, CCMs
Rayleigh-Bmard convectior{5], and heart tissu¢6]. Pat- are discrete time, continuous space models, that map a con-
terns in extended systems arise as a result of the interplay &huous field variable defined on a continuous spatial domain
many factors, including the external forcing and/or the excit-forward from a discrete time indem to time indexn-+ 1.
able nature of the medium, the spatial interactions betweemherefore, a CCM model is specified by giving an operator
the different parts of the extended system, and internal dis# [ -], that maps the continuous fiefg(x) forward in time:
sipation. It is often the case that exact dynamical equations
for these systems cannot be determined. Furthermore, even if
exact equations and parameters are determined, the equations Enr1(X)=F[&€(X)].
are often very hard to solve. Therefore, a useful approach to
studying the dynamics of extended nonlinear systems is
through the formulation of generic models. CCM models are particularly well suited for the study of
Generic modelsor model equationsare dynamical equa- periodically forced extended systems for the following rea-
tions that are much simpler than exact equations for the sysons.
tem of interest. However, they are designed to include key (1) Because of the periodic forcing, the system does not
features of the exact equations that are suspected to lead lhave a continuous time translation symmetry. Rather, it has a
qualitative phenomena seen in real systéeng., pattern for-  discrete time translation symmetry for translations by mul-
mation [1], coherent states and solitary wa\é&s, bifurca- tiples of the forcing period. Therefore, a map is particularly
tions, spatiotemporal cha¢8], nontrivial collective behav- appropriate for modeling the temporal dynamics of the sys-
ior [9], etc). These models are therefore very useful intem.
exposing the typical behavior to be expected in nonlinear (2) Using a continuous field on a continuous spatial do-
pattern forming extended systems. Examples of such modefaain enables one to model patterns unconstrained by an im-
include the Swift-Hohenberg equation, the complexposed grid. This is appropriate for the modeling of patterns
Ginzburg-Landau equation, and the Kuromoto-Shivashinskyn extended systems.
equation. (3) Since the temporal dynamics are given by a map, and
There are various classes of generic models including pawe can efficiently implement spatial coupling operators by
tial differential equationgPDE modely lattices of ordinary  spectral (fast Fourier transformn techniques, numerical
differential equation§LODE model3, coupled map lattices implementations of CCM models can be made very efficient.
This makes it possible to run simulations of CCM models
much longer than simulations of equivalent PDE models for
*Electronic address: shankar@math.uchicago.edu the same computational effort.
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TABLE I. Classes of models for the description of pattern form- 8 *

ing systems. The other possible clas@dscrete field variable and a b DA *DEO*RaEZEZ
continuous spatial domain or tirnappear not to be physically rel- 7L <« #,XﬁGgN;s (t4)
evant, since the dynamics is either discontinuous in space or time, SQUARES (f/4) ' «
or is trivial. 6 ; STRIPES (f/4)
®8852s.8882800,,
o8 e,
Model type  Field variablg)  Spatial domain Time 5% L. FLAT WITH KINKS
. . . r :>>"”H%X’AG“N’f72“"0"
PDE Continuous Continuous Continuous 4l Y QNS E2), L e e e
LODE Continuous Discrete Continuous SQUARES (f/2) !
CML Continuous Discrete Discrete 3 g wana . : STRIPES (f/2)
CA Discrete Discrete Discrete SoooS®Rng A ANy EmEammgEREE
CCM Continuous Continuous Discrete 2r FLAT
! 10 3l0 5\0 710 9|0 1 1 0
In this paper, we will use a CCM model to examine the f (Hz)
consequences of the interaction between temporal period
doubling and spatial pattern formation with a preferred FIG. 1. Experimental phase diagram from R¢f0,17.

length scale. This work was originally motivated by experi-
ments[10—-12 in which the authors observed the formation  Figure 1 shows an experimental phase diagram from Ref.
of a variety of two-dimensional patterns in a vertically vi- [10], whereI is the nondimensionalized oscillation ampli-
brated thin granular laydrl3]. We will see that the CCM tude:
approach is very fruitful for the consideration of these ex-
periments. I'=(2mfy)?Alg.

This paper is organized as follows: In Sec. Il, we briefly
review the recent experimental resuli—-12 and the ex- HereA is the amplitude of the oscillation of the platl, is
perimental phase diagram. In Sec. IIl, we discuss some of thihe oscillation frequency, amglis the acceleration of gravity.
theoretical approaches to modeling these experiments. In The results in Fig. 1 were obtained for a relatively thin
Sec. IV, we give some motivation for the CCM model equa-layer, about seven grain diameters thick. When the layer
tions that we propose for describing the experiment. In Seahickness is increase@.g., to 15 diameteysadditional phe-
V, we present results from numerical simulations of ournomena are observed. These patterns were reported in Refs.
model and compare these results with the experimental oj411] and[12]. The most interesting of these additional phe-
servations. We present a summary of the results of our analyxtomena is the presence of localized, solitary structures oscil-
sis of the pattern formation in Sec. VI. In Secs. VII-IX, we lating atf /2, which the authors calledscillons An oscillon
give a detailed account of the analysis and we present & a long-lived localized /2 structure that exists as an alter-

concluding discussion in Sec. X. nation between a hill and a depression of the layer surface.
These oscillons can be isolatéd., surrounded by th, flat
IIl. VIBRATED GRANULAR LAYERS stateg, or else can exist in bound states of two, three, or more

regularly arranged oscillons. The oscillon phenomenon is ob-

In the experiments in Ref§10-12, the granular layer served in the vicinity of the transition between thg flat
consists of brass spheres, is supported from below by a horétate and thd /2 patterns.

zontal plate, and has an upper free surface. The system is
driven by vertically vibrating the plate sinusoidally. Varying
the amplitudeA and the frequency, of the sinusoidal vibra-
tion leads to the formation of, and transitions between vari- As the authors remarked in R¢fl2], these experiments
ous patterned states. These patterns are roughly analogouspi@vide a challenge to theory. In the case of Faraday waves,
Faraday wave patterns in vibrated liquid layers. that is, parametrically driven surface waves in vibrated liquid
A variety of patterns are seen in these experiments. Foayers, the Navier-Stokes equations give a complete descrip-
example, in Ref[10], holding f, fixed and increasing the tion of the dynamics of the system. The onset criteria for the
oscillation amplitude, the following sequence of states wagpatterns can be derived from these equations, both for ideal
observed: a uniform flat state oscillatingfat a stripe pat- fluids [14] and for viscous fluidg15]. The Navier-Stokes
tern oscillating aff /2 (i.e., the period of the pattern oscilla- equations can also be reduced to amplitude equafibéls
tion is double the vibrational perigda hexagonal pattern, that provide a good description of the pattern formation in
also atfy/2; two flat domains separated by a “kink” with Faraday waves. The situation is very different for granular
each domain oscillating &i,/2 but with each in one of the flows. For granular flows, there exist no equations, that cor-
two possible tempordly/2 phases of oscillation; competing respond in stature and in the range of applicability, to the
square and stripe patternsfat4 (i.e., a further period dou- Navier-Stokes equations for fluid47,18. It is therefore a
bling has occurred /4 hexagonal patterns; and, at higher challenge to build an analytical model of the pattern forma-
driving, patterns disordered in space and tirffeee Figs. tion seen in vibrated granular layers.
1(a)—1(f) of Ref.[10].) The only direct, first-principles approach to studying the

Ill. MODELING GRANULAR FLOWS
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dynamics of granular materials with many interacting par- It is relevant to consider the dynamics of a single inelastic
ticles has been molecular-dynamics-type numerical simulaball on a vertically vibrated plate, analyzed by Mehta and
tions. Such molecular dynamics simulations of spheres on guck in Ref.[30]. In this situation, the only control param-
vibrating plate reproduce the experimentally observed pheeter is the nondimensional vibration amplitud&
nomend 19] qualitatively and quantitatively. From the mea- =472f?A/g. Since the ball is inelastic, it loses all its kinetic
sured single particle velocity distributions as well as the corenergy on impact with the plate. On every cycle, the ball lifts
relations of the particle positions and velocities in theoff the plate, at the point in the cycle when the acceleration
simulations[19], the authors concluded that a useful ap-of the plate in the downward direction is greater than the
proach to model the granular flows in the experimentsacceleration due to gravity. In this situation, the ball “for-
[10-17 is through the continuum equations obtained fromgets” its dynamical history in every cycle, and the dynamics
the kinetic theory of dissipative gas¢®0]. The results in  can be entirely deduced from a knowledge of the time of
Ref.[21], which revealed a continuum type stability diagram flight between one bounce and the next, that is by a one-
for the stripe patterns, also suggested that a continuum modgimensional map.
will be appropriate for modeling the granular flow in the  This map was analyzed in detail in RE80]. The dynam-
vibrated layers. In ongoing work, many authors worked onics for this map is complicated because the map is not
the validation of the continuum equations by comparisorsmooth(or even continuoys For purposes of our model, the
with molecular dynamics simulations, as well as using thefollowing behaviors, which occur over significant ranges of
equations to study the phenomena in vibrated granular layefs are the key features of this map.
[22]. (1) For I'>>1, the ball lifts off the plate at some point in
Another useful approach to this problem has been to poshe cycle. The first behavior that is observed is a fixed point
tulate phenomenological equations for the vibrated granulafor the time of flight map; that is, the dynamics of the ball is
layer based on physical considerations or using analogiegie same in every cycle, and the time of flight is shorter than
with hydrodynamic§23-2§. These models give results that the oscillation period; the ball hits the plate once every cycle.
are in qualitative agreement with the experiments in portions (2) Increasingl” above a critical value causes this fixed
of the phase space. However, different models make differpoint to lose stability to a period doubled state. The times of
ent assumptions in modeling the underlying physics of thelight alternate between a long flight and a short flight, and
granular flow, or else have undetermined coefficients whichhese times are such that the ball hits the plate on every
are set in order to give agreement with the experimentgscillation cycle.
Therefore, it is difficult to judge the relevance of the particu-  (3) Above a larger value of the dynamics of the ball is
lar physical ideas in these models to the behavior of granulaggain given by a fixed point of the time of flight map, but
materials. with the time of flight longer than the oscillation period. In
Our approach is motivated by the current lack of physicalhis regime, the ball hits the plate only once every two
understanding of dynamics of granular meflld], and the  cycles.
possibility that there exist no local equations describing These behaviors are represented schematically in Figs.
granular flow[18]. Thus, in building our model, we will 2(g), 2(b), and Zc), respectivelyI is the only relevant di-
consider the underlying symmetries of the system and thenensionless parameter for the dynamics of a single inelastic
qualitative features of the dynamics. We will use dimen-pall on a vibrating plate. For a granular layer, the other di-
sional analysis to identify the relevant variables, but will mensionless parameters that can be experimentally varied are
strive to avoid modeling the physics of granular flows. N, the thickness of the layer in grain diameters, gd
Our model and some of the results from it were first pre-= f2a/g, which is a dimensionless measure of the frequency
sented in Ref[29]. The CCM framework arises naturally in of oscillation. Herea is the diameter of a typical grain. The
our model, since it is particularly suited to the symmetries Ofparameter[.-% can be written as/|, that is as a ratio of two
the system. To the extent that the model is free of phys'c%ngth scales, wherle=g/f2.
specific to the experimental system, we can regard the ex- \ye yjl first consider the situation wheiekept constant,

perimentally observed features reproduced by the model 5 1 and g are varied. The first question in formulating a
universal. Although this approach will not shed light on the ccp model concerns the dimensionality of the field variable
physics of the underlying granular flow, it will enable us 10 » opyiously the simplest choice is to take the field variable
identif_y the key dyngmical features that lead to the observeq, ye a scaiar. This is suggested by the fact that the dynamics
experimental behavior. of a single ball is given by a one-dimensional map. It is also
suggested by the very dissipative physics of granular media:
when the layer hits the plate its kinetic energy is rapidly
dissipated, so that when, later in the cycle, it departs from
Our goal is to produce a phenomenological model of thecontact with the plate, it has “forgotten” the velocity with
experimental results and, as stressed above, we wish to usevhich it struck the plate, and one might consequently expect
minimum of physical input in building this model. By this that its subsequent evolution is determined solely by its
approach, we wish to use our model to test hypotheses comeight profile(a scalar functiopat the time it leaves contact
cerning the essential model properties necessary for explainvith the plate.
ing the experimental results. As we argued earlier, the CCM The next task is to specify a mapping §from timen to
framework is ideal for this task. time n+ 1. The basic framework of our CCM model is as

IV. CCM MODEL FOR VIBRATED GRANULAR LAYERS
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3 @ specifying the spatial coupling operatdr In Ref.[10] the
f a /4\ /[\ /[\ /\ /\ / authors argued that the various patterns they observed are
Yo produced by interaction between temporal period doubling
- v y \/ \/ \/ \/ and an instability that produces spatial variations on the sur-
25 20 face of the layer. We wish to test this in the simplest possible
way, using the above CCM framewofEgs. (1)—(4)]. In
10 ; ; ® particular, in choosing andf, we use the hypothesis sug-
5-/ d gested by the experimental results that period doubling and
y ANV AN NN NN the occurrence of a preferred spatial scé@dey., the stripe
2 NSNS NS NS NS wavelength or the hexagon diameteare the crucial at-
S5 10 20 30 20 tributes of this system.
d We incorporate the period doubling in the “local” tem-
20 ' ' : © poral dynamics by choosing a unimodal mipthat has a
y 100 ~ / period doubling sequence. For most of the numerical results
NANEVA N ANV 7 in this paper, we use the map
\\// \«/ <~/ N/ \\/ N/
-0y 10 20 30 40 M (&) =r exd — (¢—1)2/2]. (5)

FIG. 2. The various dynamical behaviors of an inelastic ball onThe map in Eq.(5) is similar to the logistic magvi(&,r)
a vibrating plate. The solid line depicts the motion of the ball, and=r ¢(1—¢), but it has the advantage that all orbits are
the dashed line depicts the motion of the plate. The units along thgounded. This is in contrast to iterating the logistic map,
axes are chosen so that the driving frequefigy 1/2r and the  \where an initial negative value yields an orbitt— —o.
acceleration due to gravily=1. (a) I'=2: fixed point for the time  One feature of mafb) that will turn out to be relevant to the
of flight map. (b) I'=4: period-2 cycle with alternating long and gjiscussion below is the fact that all the period doublings in
short hops. (c) I'=6: fixed point with the ball hitting the plate 4ig map are supercritical.
only once every two cycles. Assuming that the “local” dynamics in the vibrated

. ] ) ) granular layer is strongly correlated with the dynamics of a

follows. We consider a scalar fielg}(x) at discrete integer  gingle inelastic ball on a vibrated plate, we are led to identify
valued timesy which we think of as roughly representing the the model parameterwhich controls the “local” dynamics

height of the granular layer at positionat a fixed phase of iy the model with the experimental paramefewhich con-
the oscillation cycle. Herg is a continuous two-dimensional (s the dynamics of the single inelastic ball.

spatial variable. To advanag,(x) forward one time period,
we first apply a one-dimensional map to &, at each point
in space,

The quantityyzlogh‘_(k)| is the growth rate for the am-
plitude of a perturbation with wave vectér between two
collisions with the plate. Assuming isotropy, we henceforth
E1(X)=M[£,(x),r], (1) write f as a function ofk=|k|. Since &(x) is real, f(k)

=f*(: k), wheré denotes com_plex conjugation. However,
Sincef depends only onk|=k, f(k) is real. By the above
considerations, at a given forcing frequenfgy, the system
has two length scales; andl. Therefore, the growth rate is

wherer is a parameter of the chosen map function. Next w
augment this nonlinear “local” discrete time dynamics with
a linear spatial operatof which couples the dynamics of
nearbyx locations:

of the form
En1(X)=LL£,(X)]. 2 —
i " F(k)=g(K/ko,k/Ke). ©6)
Assuming translational invariance, the operafois of the
form We incorporate spatial patterning at a preferred sbgl"eby
o ) taking|f (k)| to have a peak dt=k,, with |f(ko)|>1. Since
LLE(X)]=T(X) ® £n(X), (3 the patterns cannot have any structures on scales equal to or

where @ denotes convolution. Since we do not expect sig-Smaller than the size of a single grdir(k)| decreases with
nificant interaction betweer locations that are distant, we increasingk, becoming smalf|f(k)|<1] at largek. Finally,
require that the spatial coupling functidiix) should decay Wwe required thatf(x) be short ranged, that i§x) should
rapidly for |[x|> X\, for a length scalé. that we will specify  decay rapidly fofx|>\, where\ is the effective range over

below. Letting &,(k) andf_(k) denote the spatial Fourier which the grains interact. Since the particles in the experi-

transforms of¢,(x) andf(x), we have ment do not move over distances that are large compared to
" ’ the wavelength of the pattern, an appropriate choice: fisr
En1(K)=F(K)EL(K). (4)  ko*. This implies thatf (k)~c for k<kg, for some constant

c. Without loss of generality, we can take= 1. [If c# 1, we
The specification for a CCM model in this framework will can absorb it by replacingin Eq. (5) by r/c.]
consist of choices of the map functidh and the functiorf, For simplicity, we choose the product form
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9(klko,kike) = ¢(kikc)exd y(k/ko)]

for g(.,.). Wesatisfy the requirements from above by mak- _
ing the following choices fory/(-) and ¢(-)

-3lie) 23l |
’Y(k)—z k_o) 1—5 K/ | (7)

B(k)=sgr(k2—k?), 8

where sgny)=1 for y=0 and sgny)=—1 for y<O.

At k=0, we havey(0)=0 and #(0)=1, yielding f(0)
=1. Note that we have chosenand ¢ such thalf_(k)~ 1on
scalesk<ky. Consequentlyf(x) looks like a delta function
for length scalegx|>k,*. A consequence of the fact that

f(0)=1 is that the spatially homogeneous states are gov-fs
erned by the mapM, and the spatial coupling operatar R
does not play a role in the dynamics. Thus, for example, a % ¥
period doubling of the map atr =r implies the existence  (€) (d)
of a corresponding transition in the CCM model, namely, a -
period doubling of the homogeneous state atr .. "
The form of the growth rate/(k) =log|f(K)| in Eq.(7) is a
simple choice for an even function that is zerkat0, has a
peak atk=kg, and is negative for largk. The presence of

the factoré(k) allows f to change sign witlk, and its form

in Eq. (8) is a simple(rather arbitrary choice for a function

that is even irk and changes sign as we charkgé&he factor

¢ introduces a second length scale in our model, and leads t

patterns besides stripg31]. The model has two dimension-

less parametens andk./k,, whose variations, we find nu- (e)

merically (Sec. Vj, play roles analogous to varying the di-

mensionless acceleratidhand the frequency, of the drive FIG. 3. Extended patterns obtained numerically in our model.

in the experiment. () Period-2 stripes at=1.9, (k./ko)?=5. (b) Period-2 squares at
Our observatioriSec. \j, that variation of in our model =19, (¢/kg)?=1.5.(c) Period-2 hexagons at=2.05, (/ko)*

plays a role similar to variation of in the experiment, is = 2-6.(d) Period-2 flat state with a kink at=2.4, (k. /ko)*=5 (the

suggested by our previous discussion of the single inelasti?“k is the border region between thezhlgrand the low¢ areas.

ball problem. Our observation that the variationkgfk, i~ (©. Period-4 stripes ar=2.7, (k./ko)"=5.0. () Disorder atr

the model plays a role similar to a variation of the drive =3.2, (ke/ko)™=5.

frequency in the experiment is suggested if we suppose that V. NUMERICAL SIMULATION

the ratiok./k, arises from the rati@/| =f§a/g, of the two

natural lengths in the system. The important observation is Figures 3a)—3(f) show numerical results from our model

that this implies thak,/k, varies monotonically wittf, and ~ asr andk./k, are changed. These pictures are qualitatively

is independent of the drive amplitude. similar to those in Ref[10]. We regard as particularly sig-
As will become clear from the theoriBecs. VI-1X, the nificant the fact that, in our model, as we increasehe

important bifurcation phenomena are independent of the spdifurcation sequence is a period-1 flat state bifurcating to

cific choices in Eqs(5)—(8). We emphasize that we view give a period-2 pattern which then becomes a period-2 flat

Egs.(1)—(8) as a minimalist model, and that several obviousstate and eventually a period-4 pattern. Thwith an in-

generalizations immediately suggest themseljesy. a crease of the parameter, the period-2 and -4 patterns are

two-or higher-dimensional map replacing the one-Separated by a period-2 flat stat€his basic sequence, also

dimensional map Eq1)]. Our point is that even this simple Observed in the experiment, is universal in that it does not

representa‘[ion is rich enough to d|sp|ay many of the experidepend on the details of the EOdel. In particular, itis present

mentally observed effects, and that certain of these effectaven with¢(k) removed, i.e.f(k) =exd »(K)].

can be regarded as physics independent and universal for Figure 4 shows the approximate locations in the two pa-

systems in which patterning and period doubling interactrameter spacegr, (k./kp)] of the various spatiotemporal be-

We will return to the discussion of this point in Sec. X. haviors numerically exhibited by our model. We note that, if
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3.0 T T
(@) Disorder - O-O--O-5-0-0 /
&f{ Period 4 Stripes .
e © |
25t 1 o 7
Period 2 Flat State /k
LS
e "3~ "Period 2 Hexagons ©
20 5] 1
Period 2 .
Squares j g?rir;?:; 2 ,
2\\ O 5O FIG. 5. The bifurcation diagram for a map with a hysteretic
. Coexisting Period 2 . .
Period 1 Flat State Stripes & Squares period doubling.
15 1 1
10 20 3.0 4.0 . .
k,/ k) stable to small perturbations. These structures are similar to
(o

the oscillons seen in the experiments.
FIG. 4. Phase diagram showing the various stable patterns seen Figure Ga) shows two oscillons in opposite temporal
in numerical simulations with the modgEgs. (1)—(8)]. phases, and Fig.(B) shows a bound state of several close
oscillons. We note that Tsimring and Arons$a3] and
we crudely identifyr with the experimental dimensionless Crawford and Rieckg28] also obtained oscillons with a sub-
accelerationl’ and k. /k, with the experimental frequency critical period doubling. It thus appears that subcriticality
fo, then there is striking qualitative agreement between th&ay be key to the oscillon phenomenon. As noted above, the
phase diagram obtained numerically from our madg. 4) oscillons that we find numerically in our model_ are stable in
and the experimental phase diagram for thin lay&ig. 1). ~ the parameter range of the hysteretic transition from the
In what follows, we consider a rande /k,>1, correspond- Period-1 flat state to the period-2 patterns, as in the experi-

ing tof_(k0)> 1. ments.
The phases in Fig. 4 correspond to states that evolve from
starting at a small initial perturbation about a homogeneous VI. SUMMARY OF THE RESULTS

state. If, on the other hand, we follow large amplitude states
with ‘?’I.OW parameter changes, th_en_we find that some of thsspects of the pattern formation that we observe in our
transitions that are nonhysteretic in the experiment ShOV}(n

. L SO . odel. In Sec. VI, we perform a linear stability analysis
substantial hysteresis in the model. We will discuss this aS3uout the spatially homogeneous periodic solutions of the

pﬁst Ifurrt:e(; 'ln Sec. X, when we consider extensions of thlssystem. From this analysis, we deduce the onset criteria for
S Opﬂ? ObeH . b d . tall h the period-2 and -4 patterns that are observed in our simula-
_JIner benhaviors are observed experimentally Whehy,,q \we also show that, generically, the bifurcation sce-
thicker layers are_wbrateﬁll,_lﬂ. In partlcular, the experi- nario on increasing the driving is period-1 homogeneous
ments observescillons—localized period-2 structures on a stateoperiod-2 patterned stateperiod-2 homogeneous
per!od-l flat background state, in the transition beMeen th tate—period-4 patterned state, explaining this characteristic
pgnod 1'f.|"."t st.ate'an_d_ the period-2 pgtterns. For th'.Ck Iayer%leature of the experimental phase diagram. In Sec. VIII, we
this transition is significantly hysteretic and the oscillons &X-geduce a framework for a weakly nonlineér analys.is of’our
ist in the transition region. model. Using group-theoretic considerations of the underly-

The bifurcations for the map in E¢5) (i.e., the bifurca- . .
tions of the full system ak=0) are all supercritical. As we ing symmetries of the system, we show that a truncated

shall see in Sec IX, this implies that there is no hysteresis in
the transition between the period-1 flat state and the period-:
patterns. We can incorporate hysteresis into our model by
changing the map to one which has a subcriticélyster-
etic) period doubling from the fixed point. As an example,
the map

In the remainder of this paper, we will analyze various

M(&r)=—(ré+ e exp — €212) 9

has a subcritical period doubling from the fixed point. Figure @)

5 is a schematic representation of the bifurcation diagram for F|G. 6. Localized states obtained using a map with subcritical
this map. With this map used in place of E&), we see bifurcations. (a) Two oscillons out of phas¢r=0.65, (./ko)?
period-2 localized states in the regime where the period-%1.7]. (b) A bound state with coordination number[8=0.55,
homogeneous state and the period-2 square state are bt /ky)?=1.7].
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modal expansion can be used to study the selection of varfermation of stable hexagonal patterns, as seen in the experi-

ous patterns in different parameter regimes. ments. The crossover between the behavior corresponding to
In Sec. IX, we specialize to the case of period-2 patternsno symmetry breaking and stripe patterns, to the behavior

Close to the onset of the patterns, there is a strong separatiovith symmetry breaking and stable hexagons is given by

of the time scales for the evolution of the amplitudes of the

various modes in the truncated modal expansion. We show A~e'?,

that the evolution of the pattern on a long time scale is de- . , .
termined by the dynamics of a small numbed(1)] of whereA is a measure of the symmetry breakiisgy the ratio

dominant modes, and that the amplitudes of the rest of th f.\}g? amplitudes of thefy and fo/2 components of the

modes are slaved to the the amplitudes of the domina ”W beli hat th ling | iallv th
modes. This technique greatly simplifies the determination of /€ Delieve that these scaling laws, especially the cross-

the selected patterns. It also enables us to study the bifurcQYer k_)ehawor for the wo fre_quency forcing, can be _venﬂed
tions between the various patterned regimes. experimentally. In the experiments, the parameter given

We will now list some of the principal results form our by
analysis. These results are scaling laws for various quantities e~|T—T|
that are valid close to bifurcations. The scaling laws are in e
terms of a supercriticality parametere is defined so thatthe \where T, is the value of the parametdt at the relevant
linear growth of the amplituda,(k) of the fastest growing pifurcation.
modes is given bya, . 1(k)|/[a,(k)|=(1+¢€). The onset of In our analysis, we also discuss various symmetry consid-
the pattern is thus given by=0. erations for the various patterns. Experimentally observable
(1) The case of one dominant mode corresponds to stripgonsequences of these symmetries include the occurrence or

solutions. We present explicit solutions to the weakly non-nonoccurrence of fronts separating domains of patterns with
linear equations. These equations give the scaling different temporal phasd40].

12
hse~e VII. STABILITY ANALYSIS FOR THE ONSET OF

for the stripe amplitudén, close to onset. We also discuss PATTERNS

the symmetry properties of the stripe patterns. We will first investigate the stability of the spatially ho-
(2) The case of two dominant modes corresponds tQnogeneous and temporally periodic states to the formation
rhombus and square patterns. We show that square pattergsspatially patterned states. This analysis will give criteria
form generically, i.e., without any fine tuning of parameters.for the onset of patterned states. It will also explain the sepa-
We present explicit solutions for these patterns that give theation of the patterned period-2 and patterned period-4 states
scaling law by a period-2 homogeneous state.
12 For a given value ofr, let the one-dimensional map
M(§,r) have a stable periog-periodic orbitéy,&s,....&p.
ThenM(§,,r)=§&,.1=¢&;1. The stability index of the peri-
n(&dic orbit is given by

hrhN €

for the pattern amplitudé,, near onset. We discuss the bi-
furcation between the stripe and the square solutions, a

show that it is r_nonhys';er_etlc as a blfurcgtlon between steady Np(N) =N(EDN(E) N(&p),
states, that is, in the limit that the run tinfe~c. We also
deduce the scaling law with
Ap~(eT)™H, IM(&,r)
N(§=———.

whereAp is the apparent hysteresis in a generic parameter at 9%
the transition between the stripe and rhombaguare solu-  since the orbit is assumed to be stable, it follows that
tions for experiments run for a finite duratioh We also |)\p(r)|<1. Recall that at a period doubling of a peripd-
show the existence dfansient stripesthat is patterns that grpit to a period-p orbit, the stability index of\,(r) de-
are a_symptotically square patterns, but look like stripes in &reases through 1. Furthermore, for the map in E¢5) and
transient stage of their evolut.|on. . N =1,2,3\,(r) decreases monotonically with
_ (3) The case of three dominant modes with an additional gqr our spatiotemporal modéEgs. (1)—(8)], we now
imposed symmetry corresponds to hexagonal patterns. Wgynsider the stability of the sequence of spatially homoge-
show that there is a hexagonal pattern solution near the onsggous stateg;(x) = & to small perturbations, so thah(x)
of period-2 patterns, but it is linearly unstable to the stripe— &+ 6&,(x). Equation(l) yields
patterns, thereby explaining why we do not see hexagonal
patterns near the onset of the period-2 patterns. SEL L 1(X)=N(&n) 8E4(X).

(4) We also analyze a model that corresponds to the two
frequency forcing experimen{d0]. We show that breaking Equation(2) yields
the discrete time translation symmetry-t+ 1/f, wheref, o L
is the frequency of the dominant forcing can lead to the 6én+1(K)=N(&p) f(k)6&n(K).
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After p iterations, we have
5€n+p(K) =\ p(N)[F(K) IPOE(K).

Since [f(k)| has a peak ak=Kkg, it follows that the
periodp spatially homogeneous states are stable to spatially

varying perturbations if\ ,(r)[f(ko)]P|<1. It also follows
that the wave vectork with the largest growth rate have
|k|=ko. Consequently, the spatially homogeneous state will
become unstable to a spatially varyifatterned state for
IAp(r)[f (ko) IP[>1.

When the spatially homogeneous state becomes unstable,
close to onset, the patterned state will consist of wave vec-
tors k with |k| close tok,. The periodp spatially homoge-
neous states are unstable to a pepapatially varying state

if )xp(r)[i(ko)]p> 1, and are unstable to a periog-pattern

wp
1.0
3 00
k)™
-1.0

PHYSICAL REVIEW E 63 046202

Jiky)

-flky)

FIG. 7. (@) Schematic bifurcation diagram near a period dou-

if Np(r)[f(ko)IP<—1. bling. (b) The stability index\(r) for the stable periodidfixed)
We will now consider the bifurcation scenarioras var-  points.

ied through the range over which the perjpdrbit is stable

for the mapM. We will assume that the periqu-orbit is  qgic orbits(or fixed point$ versusr. At r=r,, the period-1
created by a period doubling from a perip@ orbit, and  ,hit of the map is superstable so thai(r,)=0. As we
that. it becomgs unsta'blg by peri.od doubling to a peripd-2 increase, atr=r., A\,(r.)=— 1, and the map undergoes
orbit. The periodp orbit is born (first becomes stablet a 5 neriod doubling. On further increasingthe period-2 orbit
value ofr=r_ such that\ ,(r -) =1. It becomes unstable 10 ocomes superstable @t o, SO thatk (re) =0.

a period-2 orbit by period doubling at=r, such that
Np(r+)=—1. At this point,\55(r )= (\p(r1))?=1, so that
a period-2 orbit is born. If the magM is smooth\ ,(r) will
vary smoothly as a function afin the rangdr_,r,.]. Con-
sequently, there is a valug in this range such that(ro)
=0. At this value ofr, the periodp orbit is said to be super-

r, satisfiesr,<r,<r., and is such that(ry)f(kp)
1. Therefore, the period-1 homogeneous state becomes
unstable to a period-2 pattern Btry,. rq is in the range
r.<rq<re, and it satisfies\,(r4)f%(ko)=1. At this point,
the period-2 homogeneous state becomes stable. On further

stable. increasingr, there exists a parameter valugwith r¢>rg,

At the superstable point, such that)\z(rf)f_z(ko) = —1. At this value ofr, the period-2
homogeneous state becomes unstable to a period-4 pattern.

Np(ro)[f(ko)IP=0.

As is evident from this argument, for models in this

_ framework, we should generically expect the following bi-
Consequently, there is a rangerofalues around, such that  furcation scenario: period-1 homogeneous stgieriod-2

|)\p(r)[f_(k0)]p|<1, and, in this range, the homogeneouspatterned stateperiod-2 homogeneous statg@eriod-4 pat-

periodyp state is stable to all small perturbations. ternedstate. Note that this conclusion does not depend on the
Sincef(ko)>1, it follows that precise details of the model, namely, the functibrasd M.

Also note that, since these are generic bifurcations, this se-

)\p(ri)[f_( ko) ]P>1. guence is stable to system perturbations that destroy the spe-

cial form of our CCM model; i.e., a local period doubling
Consequently, there is a rangerofalues including _ but ~ nonlinear map followed by a linear spatial coupling.

less tharr, such thamp(r)[f_(ko)]p>1; in this range, the
homogeneous periop-state is unstable to a perigdpat-
terned state. Also,

VIIl. ANALYSIS OF EXTENDED PATTERNS

The elementary stability considerations in Sec. VIl give

Ap(r [ f(ko)IP<—1, us the basic bifurcation scenario and also the values of the

parameterr at which there are bifurcations between flat

so that there is a range ofvalues including . but greater  states and patterned states. Although the stability analysis
thanrg, such thai ,(r)[ (ko) ]°<—1, and in this range, the indicates that patterns with a length scalkyldre formed, it

homogeneous perioglstate is unstable to a periogp2at- does not give us any information on the nature of the pat-

terned state. terns.

We will illustrate the above bifurcation scenario for

In this section we will analyze the model further and de-

period-1 and -2 homogeneous states. Figue is a bifur-  termine the patterns that are selected near onset. If we con-
cation diagram for a generic may (¢,r) that undergoes a sider the model on a square regiogy)  [O,L]X[0,L] with
supercritical period doublinde.g., Eq.(5)], and Fig. 7b) periodic boundary conditions, the scalar figldcan be ex-
schematically shows the stability index for attracting peri-pressed in terms of the Fourier modes as
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0= 2 EnlkyekiX, (10)

(ij)ez?

whereZ? is the integer lattice in two dimensions, and

ij—

2@ 2|
L L

Since¢, is real, it follows thaté,,(—k) = & (k), whereg* is
the complex conjugate af. We will assume that the square
region is much larger than the wavelength of the pattern, tha
is kgL>1.
In order to determine the selection of patterns, we need tc
look at the equations for the evolution of the amplitudes | e . :

-
-~
(k) beyond the linear order. A formal procedure would be GINITEINE F E S——
n(’) Deyond the finear order. A formal procedure WOl be e i I %

as follows. _ . _ . WAL S ¥ )
(1) Drop the terms in the Fourier series witk;;|>kq. P | 3 :
[Sincef(k)<1 for k>k,, these modes are strongly damped L I - ('
in every iteration] This converts the infinite sum to a finite SN, . T
sum with O[ (koL)?] terms.

. . . d
(2) Expand the nonlinear equations that specify our model(c) (@)
in powers of the mode amplitudég(k), and retain the low- FIG. 8. Various regimes in the formation of a pattern, starting
est order terms. from a random, close to homogeneous, initial condition. The param-

This, however, is not a practical framework for the ana-eters are =1.73, (,/k,)2=2.5.(a) The pattern after ten iterations.
lytical study of pattern selection, because we will obtain) The patterns after £aterations.(c) The patterns after £atera-
O[(koL)?] nonlinear equations with the mode amplitudestions. (d) The patterns after fditerations.

&.(k) as dynamical variables. We therefore need to signifi-

cantly reduce the number of degrees of freedom that we have 2

to consider. The procedure that we use to carry out this re- K =1 n
duction is analogous to the procedure used in PDE models of ) maX j) <72, |§(k“)|2 |

pattern forming systems where the patterns are represented L2 (L0 # @015t

by amplitude equations which are then analyzed in the

weakly nonlinear regimgl]. The factor 1/2 in the definition oK, is to account for the

We motivate our reduction procedure by considering the, thaté, is real, and this impliegn(—k) :En(k)- which is
results from a typical simulation of the model. Figure 8effective|y one(complex mode amplitude.

shows the evolution of a pattern from an initial state that is Figures 9, 10, and 11 show the evolution of the quantities
spatially homogeneous with a small random perturbation. T

We use three quantities),, B,, and K, that are defined
below, to characterize the evolution of the pattern. The typi-
cal amplitude of the patterg,(x) is given by the mean
square fluctuation

107

2

5§=L—2f gﬁ(x)dx—L—ZU £,(x)dx

= 2 [&kpIP=[&0)%. <
(i.j)e7?
We measure the deviation from temporal periodicity by the |
(normalized quantity

10°

1
Bﬁzw f [§n+p(x) - §n(X)]2dX,

0 4000 8000 12000
n

wherep is the presumed periodicity of the system. Finally, FIG. 9. The evolution of? with the time indexn for the simu-
we define the effective number of modes to be lation depicted in Fig. 8.
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For our choices of parameter~400. In this regime, no
10° . pattern has yet been select@.is approximately a constant
in this regime.

(3) After about 2000 iterations, the growth 61 saturates.
0% - ] To a good approximation, the system is in a periodic state. In
this intermediate regime, the nonlinearities in the dynamics
have selected a pattern, in this case a stripe pattern. How-

4

10 ] ever, this pattern is not “global,” in that the stripes do not
L - have the same orientation through out the square. Rather,
o they have domains of constant orientation, and the typical

length scale of a constant orientation domain is on the order
- . of a few wavelengths.
. (4) There is a slow coarsening process foF£0=<10%,
wherein the domains compete, with some of them growing at
o o 10° 0 o the expense of the others. After about it@rations, which is

n on a time scaleT>r, one domain takes over the entire
square region. The system is now in a periodic steady state,

FIG. 10. The deviation from periodicity wsfor the simulation  and in this regime the stripes are globally lined up.
depicted in Fig. 8.

appear to be four regimes in the evolution of a patterned ) ) ) .
state. The preceding discussion shows that the dynamics of the

(1) There is a short initial transient far<100. At this system has multiple spatial and temporal scales. Further, in
stage, the mode amplitudes of the wave vectors Wth order to describe the pattern selection in this system, we need
sufficiently different fromk, decay rapidly, and the quanti- to Ioc_>k at the dynamics in the intermediate regime where the
ties 82, B2, andK,, all decrease rapidly amplitude of the patterns have saturated, but the patterns are

n’ n? n .

: ._, hot yet “global.”
ro(vzv)thpc:‘aészef(gz 1%02 :C)<W;gooby|nathﬁ)2arzeirgfe iﬁzogﬁ]m;fl For a stripe pattern, we would expect three degrees of
tgd f Ilnth i bl~ d '  reg d 'Ft)h thfreedom—the stripe amplitude, phase, and orientation—to be
udes of all the unstable modes grow in accoraance wi 8ufficient in order to describe the pattern. For the intermedi-
predictions from the linearization about the homogeneou

: . 3te regimen~10®, we see thaK,>1 for the simulation
state that was considered in Sec. VII. The growth rate for th%lustrated in Figs. 8 and 11. This is due to the fact that there

modes withk=Ko in this phase is given by lof(r)f(ko))).  are many domains each of which has a stripe pattern, but

so that the associated time scale is with an independent orientation and amplitude. This makes it

hard to describe the dynamics of this regime, since we need

_ 1 to describe the dynamics of many degrees of freedom. In

Iog[|)\(r)f_(ko)|] ' contrast, fom~10%, K_n§1 to within a few percent. The_re-

fore, we expect that it is much simpler to describe this re-

: : gime. The large number of effective degrees of freedom in

the intermediate quasi-steady state is due to the following
two features in our model.

(1) The dynamics given by the may in Eq. (1) is purely
local, and the functiori(x) in Eq. (3) is short ranged with an
effective interaction range-k, 1. Consequently, if we divide
the square region into domains that have a length skcale

s satisfyingkgl<l <L, the dynamics on each of these smaller
e 0 L | domains is largely independent of the dynamics on the other
domains, at least for the time scales corresponding to the
initial growth of the modes, which is the time scale at which
patterns first appear.
(2) If koL>1, the boundaries do not play a significant role
o in the dynamics. In this case, the model is exactly invariant
107 ¢ 1 under time translations by one time step, and is approxi-
5 - - - 5 mately invariant under spatial translations, rotations, and re-
10 10 10 10 10 flections about arbitrary directions.
n As a consequence of remafR) above, the symmetry

FIG. 11. The dependence of the effective number of modes oroup for the equations on an infinite spatial domain, i.e., in

the time indexn for the simulation depicted in Fig. 8. the limit L—o is

T

10° | 1
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G=7XR?x0(2), From our earlier discussion, the pattern on each domais
characterized by an elemegite P. We can define a field of

where the first factof. is from the(discreté time translation € Symmetry elements

symmetry, the second factor is the translation group in two

dimensions, and the third factor is the approximate symmetry g(x,n)= 2 gi(M xp (%), (11
under rotations and reflections.dfe G is an element of the ' '
symmetry group, theg=(m,a,M), wherem is an integer,
aeR?, andM is a 2x 2 orthogonal matrix. The action of an
elementg=(m,a,M) on the scalar field,,(x) is given by

whereya(X) is the indicator function for the sét From our
discussion above, it follows thaf(x,n) does not vary sig-
nificantly over a length scale>k, and a time scal@>r.
, Therefore, we can coarse grain the figldver these scales to
Sel én(X¥)]= &nr(X') obtain a smooth, slowly varying functiog(x,n). To de-
scribe the quasisteady intermediate state and the approach to
wheren’=n+m and x'=M - (x+a). We will henceforth the asymptotic periodic pattern, it suffices to consider the
refer toG as the symmetry group of the dynamical system,dynamics ofg(x,n). We will call the fieldg the local de-
on a finite domain of siz&, even though this is strictly true grees of freedonof the system. We will make these argu-
only in the limit L —oo. ments mathematically rigorous by doing a multiple time
A consequence of thigapproximate symmetry is that, scale analysis of the system in a future publication, where we
even if we are in a parameter regime with a unique stablavill also determine the dynamical equation for the figid
patternP that is an attractor for the system, there is degen{33].
eracy in the asymptotic states of the system associated with The domain decomposition effectively decouples the dy-
the symmetries of the equations. namics of the pattern in the intermediate state from the pat-
The degeneracies due to the symmetries of the systerntern selection problem. The pattern selection problem re-
along with the short range of the interaction imply that it is duces to finding the appropriate asymptotic patterand a
possible to sustain different solutions in different spatial do-description of the dynamics in the intermediate state is given
mains for time intervals that are long compared to the timeby the dynamics of the field which does not play a role in
scale for the initial growth. In a parameter regime where adetermining the patteri®. In what follows our concern is
periodp patternP(x,n modp) is the unique stable pattern, with determining the stable pattefh
the intermediate quasi-steady-state is described by the fol-

lowing “domain decomposition.” _ _ B. Truncated modal expansions
(1) The squareR=[0,L]? is divided into domain®D; , i ) . .
=1.2,... M. We have argued that, in order to determine the selection

of patterns, it suffices to find the stable global pattén
Since the patterns are selected in the initial phase on a time
scaler and the dynamics are such that there is no significant
interaction between domains of sizek, ! on a time scale

7, it suffices to restrict our attention to such a domain and

(3) The d(_)malnsDi as well as the asymptotic _patteg-h look at the pattern that is selected on this domain. Note that
on the domairD; are nearly unchanged over the time scale . . 1. - ) )
a domain of sizé>Kk, ~ is sufficiently large in order to dis-

the characteristic time for linear growth of the modes. Here ith ) d :
the patternst’, are given by the action of a symmetry trans- ¢ patterns with a scalg *. We now attempt to determine

formation on the patterR. This notion can be formalized as me gattern_ se!ecttr(]ad .OT‘t. slutch a_dotmalnv\iz vvteII asl d((ajt_ermtme
follows. LetS denote the set of all the solutiogs(x,n) that € dynamics in the initial transient gro stage leading to

are equivalent td®(x,n) modulo the action of a symmetry therprmang of theDseletct:]ted Ipatt(i;ln. I that
transformation ing. Let GC G denote thasotropy subgroup ikl.x'\ier:kf_‘x fomallln V\Ig _fa|kefg|]( |<<S$/? _’”:Ne fsee a
for the patterrP, that is the set of all the elements @f that err~e or all xe D 1t Ky~ Ky - nherefore, we

leaveP invariant[32]. ThenG is the symmetry group of the can coarse grain the Fc_>ur|er m_ode amplitudes over a region
patternP, since of size smaller than IL/in Fourier space. Lek be in the

center of/C, a coarse-grained region in Fourier space. If the
pointxg in the domairD is such thaD is contained in a disk

Sl PO, ]=P(x,n) centered atx, of radius|, we defineb,(k), the coarse-
grained amplitude for the regiofd, by requiring that

(2) On each domai;, away from the boundaries of the
domain, the scalar field,(x) is close to the scalar field
£ (x,nmodp) of a “global” pattern, that is a pattern which
is a stable, asymptotic, periqusteady state.

for allge G. G is a normal subgroup @ [32]. The quotient

groupP=g/G, is the set of all the transformations between by (K)o~ 3 Z (ki )elkii X

the elements of, the set of distinct pattern solutions equiva- ek !

lent to P(x,n) [32]. We will call P the transformation group

of the solution setS, and every elemerd € P gives a solu- for all xe D. Settingx=xX,, we thus takeb,(k) to be
tion &,(X) equivalent toP by

ba(k)= 2, &(kjj)e' i, (12)
én(x):Sg[P(X!n)]- kijE/C
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From the symmetries (E , we haveb,(—k)=b? (k). From _ ik
Egs.(12) and(10), we see that on the domaid, the scalar &n(X) = £, =bn(0) = &, +kme;,k¢0 b (k) €
field ¢ is given by

= E an(km)eikm.xv
£n)~ 2 bn(kme'n, (13 km<c

" wherea(0) =b(0) - ¢, anda(k)=b(k) for ke C,k#0. Us-
where the se€ is the set of the centers of the coarse-grainedng this expression and Ed15) gives an expression for
regions in Fourier space that contribute significantly to theé, 1(X) with errors of ordera?, wherea=max,_c|a,(K)|.
sum in Eq.(10). Equation(13) is atruncated modal expan- We need to coarse grain this expression by the same regions
sionfor ¢ on a domairD. In general, the size of is small  that we used for defining,(x) in order to keep a consistent
and the number of terms in this sum for a pattBris of the ~ modal expansion. This procedure is effected by setkng
same order as the numbiy, in the periodic regime at long ~k, wherek is arbitrary andk,e C, if [k—ky|<1/. The
times. Therefore, this is an effective way to reduce the numlinear operatotC is given by
ber of degrees of freedom. However, this expansion gives a _ _ _
description that is valid even in the initial stages of the pat- LlekmX]=f(|ky|)e'km>,
tern selection. Note that, unlike the amplitudes of the Fourier )
modes which are defined on an integer lattice, the€dstnot ~ for all ke C. Since F[£,]=L[M(£)]=£q+1, We can

a priori restricted to be of any particular geometric form.  compare the terms of the modal expansionsCpM (£y)]
and ¢, 1 to obtain

IX. PERIOD-2 PATTERNS an+1(K)=a(k)a,(k)

Our discussion of pattern selection up to this point has .
been general and is valid for all parameter regimes of our +f(|k|)(,82 > Ip(kyt+ko—K)an(kq)an(ky)
model. We will now restrict ourselves to the pattern selection ki ka
problem for period-2 patterns.

We begin by considering the parameter regime near onset Ty D > (Kt kot ks—k)
of the period-2 patterns. From our discussion in Sec. VII, we ki ka ks
see that the parameter=r, at onset is given by
A(rp)f(ko)=—1. Forr>ry, A(r)f(ko)<—1. We define a X an(Ky)an(kz)an(ka)
supercriticality parametes by

+0(a%), (16

where all the summations are over the relevgnin C, and

e=—N(r)f(ko) —1. I, is an indicator function given biy(k) =1 if |k|<1/, and
. zero otherwise.
We can define a mode-dependent growth rate by We will consider this equation for the modes wilk|
_ —ko|> 1/ and|k| =k, separately. The linear analysis in Sec.
a(k,r)=N(r)f([k]). VIl suggests that the modes with the largest amplitudes have

. _ |k|=Kkq. In the initial stages of the growth, the evolution of a
Then a(k,r) = - (1+ E) if |k| = ko. We W|” assume that we mode amp“tudan(kl) with |kl| = kO is given by
are sufficiently close to onset {-ry, is sufficiently small so
that for an~1/l and au>1/7, we have ani1(ky)=—(1+e€)ay(ky) +N[{a,(k)}]. a7

a(k,r)>—1+u if |k|—ko|>7. (14  whereN[{a,(k)}] is a nonlinear term that depends on the set
of mode amplitudega,(k)}. This leads us to consider the
This is always possible sinceis very large near the onset, inhomogeneous difference equation
and|a(k,r)| has a single peak dk|=k,. From this point,

we will keepr fixed and suppress the dependence of the 1= adytfy. (18)
\)(arlous quantities on, i.e., for example, we denote(r) by We can solve this equation to obtain

We can expand the nonlinear map in Efj) about the n
(stable fixed point£, to obtain a . 1=a" tagt > a" Mf,,. (19

m=0
M(EN) —E =N(E—E) T B(E— &)+ y(E—&,)°
(BN =& =MEZE)F AL &)™ y(E- &) Therefore, we can solve E@L7) to obtain
+0[(¢—£0)%. (15 ) )
an(ky) =(=1)"(1+¢€)"ap(ky)

For reasons that will become clear below, we need to expand n—1
to third order iné— ¢, . + )" M=10] 4 )N M-1N

From the modal expansion in E(L3), we see that rnz:O =1 (1+e) m
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whereN,, is the nonlinear term with the dependencies supplies that—k e C,. For the modes il€,, to the lowest order

pressed. The linearized solution obtained by neglecting thg the mode amplitudes of the modesGn [Eq. (16)] gives,
nonlinear terms is valid fon such thatne<1 and |N,|

<elap(ky)|. If the dominant nonlinearity is of the form an.1(K)=a(k)ay(k)+ BF(|k|)
N({a,})~aP, we see that the nonlinearities become impor-
tant Whenfa"’ap, that is XE 2 |b(k1+ kz_k)an(kl)an(k2)a
ki ko
a~elP~b),

where the summations are now restricteckie C; andk,
Therefore, to time scales of order~1/e and amplitudes <C,. From the discussion above, the mode amplitudes
smaller thate”(P~), the mode amplitudes withk|=k, a,(k;) for k; e C, vary on time scales much longer than the
evolve independently of each other, and grow exponentiallytime scale[1—|a(k)|]"* for ke C,. Therefore, using the

Once the nonlinearityN, becomes comparable 10 expression in Eq(20), we can solve the above difference
€a,(ky), the evolution depends on the sign of the nonlinearequation to obtain

ity. From Eq.(17), we have

anso(K) —ay(ky) = (2e+ €?)an(ky) +Nys;— (1+ €N, . ay(k)=BT(IKD 2 2 To(kytke—k)
1 2
If the nonlinearity is confining, that is if the sign &, ¢ (ky)Cn(Ky) +d. (kq)d(k
—(1+€)N, is the negative of the sign @f,, the nonlinear- nka) G 12_ (|:§ 1)dn(kz)
ity saturates the growth of the modes. Further, if the fixed @
point a,, ,=a, of the above equation is stable, we have a (—1)"cn(kq)dn(ky) +dn(ky)cn(ky)]
stable period-2 solution and the time scale on which the am- + 1+ a(k)

plitudes saturate is of the order ef~1/e. If, on the other

hand, the nonlinearity is not confining, the amplitudes will since a(k) =\ (r)f(|k|), only depends ork|, we can sim-

grow rapidly until they are saturated by higher order nonlin-pjify the above expression by defining
earities.

Since we are looking for period-2 solutions close to onset, ,Bf_(k)
we will assume that the nonlinearity is confining and the gi(k)= ———.
mode amplitudes saturate to give a stable period-2 periodic 1xN(r)f(k)

state. At saturationa,(k) can be expressed as,(k) ) o
= (—1)"c(k) +d(k). This suggests that we describe the am-With these definitions, we have
plitude a,(k,) with |ki| =k, for all n by

an(k)=2 > ly(ky+ky—k)
ki kp

an(ky) = (=1)"cn(Kq) +dn(ky), (20)
where the amplitudes,, and d, depend on the slow time X{g_[ (kD) (cn(ky)cn(kz) +dn(ky)dn(ky)]
ic:alle/::'n, that is, they only vary on time scales of the order of (= 1)"G (IKDen(Ky)da(Ky) + dr(Ky)Ca(ka)
We will now look at the modes withk| —ko|>1/. Equa- (21)

tion (14) implies thata(k)=—1+ u for this case. Ifa>

— 1+ p with 0O<u<1, |a|P<1 for p=1/u. Therefore, for
long timesn, the solutiona,, in Eq. (19) relaxes on a time
scale shorter than 4/ and is essentially determined by the
inhomogeneousforcing) term f,, for n— = 1<m<n.

Note the following features about the solution for the mode
amplitudesa, (k) for ke C, given by Eq.(21).

(1) The mode amplitudea, (k) for k e C, are completely
determined by the amplitudes for the wave vector<in

- : : that is they areslavedto the amplitudes,(k;) for k; e C;.

Note that, sufficiently close to onset, the time sqalé is (o1 S =Ly

much smaller thar. Consequently, Eq:20) show that the (22) If (2:;(‘9_:)6 ©7D, for all ke C,, we havea,(k)~(c

amplitudesc and d are essentially constant over the time +d9)~e - Therefore, the mode amplitudes foe C,
scales on which the mode amplitudag(k) with ||k|—ko| are higher order ire than the mode amplitudes of the wave

>1/l evolve. Also, note thaa, the amplitude of the modes VECtors inCy.

with |k| =Ko, is given bya~ e¥P~1) and this is small close (3)_ If c, and d, saturate to constant values, the mode

to onset. Therefore, we can expand all the mode amplitude@MPlitudes for alk e C, saturate to a period-2 state.

in powers ofe and, close to onset, it suffices to keep the term W€ can extend the above construction as followsk If

with the smallest power. e C, we define ded() to be the smallest integen such that
We will now formally carry out this procedure of keeping (1) M1,M;,...,mq are positive integers with

the terms with the smallest powers efn the evolution of

each mode, (k). Let C,C C denote the set of all the modes

kme C with |ky|=ko. ThenkeCy implies that—keCy.  and (2) there exist wave vectolig; ,s,... ke C; such that

Also, let C,CC denote the set of all the modds, e C

—Cy with 15(K; +K; —kp) =1, wherek; , kj e C; . ke Cy im- (MK + Mokt -+ mgkg—K) = 1.

my+my+---+mg=m,
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A similar analysis to the one carried out above will show that Cns1—Ch=€Cy+N(Cp,dy),
if deg(k)=m=3, the mode amplitude,(k) is completely
determined by the mode amplitudes of the modeS;initis ~ where the nonlinear term is homogeneous of degree 3, so
of a higher order ine with a,(k)~e™®~1 and it will as- thatN~aP with p=3. It is clear that in the initial stages,
ymptote to a period-2 solution if the mode amplitude<Cin ~ grows exponentially on the time scada. If the nonlinearity
do so. Note that this justifies the claim that we made at thés confining, we see that the amplitude fowill saturate at
beginning of this section, that the modes with the Iargest:~e”(p_l)=61/2.
amplitudes havék|=Kk,. To solve for the mode amplitudes ~ Using the expressions in E(R2) in Eq. (16), and collect-
of the modes irC,, we will substitute the expressions in Eq. ing all the terms without a time dependence of the form
(21) in Eq. (16) with ke C;, keep the linear terms as well as (—1)", we obtain
the terms that are the lowest order in the nonlinearity, and ,
solve the resulting equations for the mode amplitudes. dns1=—(1+€)dy+N'(Cp,dy),

We haye now reduced the_ problem of flndmg the patFerQNhere the nonlinearity is again homogeneous of degree 3.
selected in the nonlinear regime to an appropriate Speclflc"’}\'Iote that, in this case, there is no nonzero solution of this

tion of the seC,, and to solving E.Q(16) f_or the amplitudes_, equation that evolves on the slow time scale Another
of these modes. In the rest of this section, we will conS|de(Nay to see this is to note that there are no solutions for

various choices folC;, and we will work out the pattern d.,1=d. with d~ €2 and any such solution will have,

selection in each case. ~0O(1). Therefore, if the nonlinearity is confining, the only
consistent solution isl,=0.
A. Single dominant mode If we derive the equation fod,, on the slow scalen
We first consider the simplest case, namely, that of gigorously using an averaging procedure and the appropriate
single dominant modé&, so thatC,;={k,—k}. In this case, ~solvability conditions[34], we obtain
we can suppress the dependence lonand definec,

—c,(K), dy=d,(k). Then, Eq.(20) along with the fact that g, =N Cndy)
¢is real gives 3 2
an(k)=(—1)"c,+d,, a,(—k)=(—1)"ck+d¥. for all n anddy=0. SinceN’(c,d)=0 for d=0, it follows

thatd,=0 for all n. Using this, and defining by
Using these expressions in H&1) yields _ o o
vs=2BF(Ko)[29-(0)+9-(2ko)]—3y. (25

an(0)=29- (O)(Jea* /") we can rewrite Eq(24) as

+2(=1)"g, (0)(cndy +dncy), 2
Chy1=(1+e€)Cph— Vs|Cn| Ch-

I 2 2 _ N
2n(2K)=g-(2ko)(Cp+ dp) +2(=1)79, (0)CnCn, (22 If vs>0, we see that, will grow until it saturates at

1/2

an(—2K)=g_(2ko)((cy)?+(dy)» +2(—~1)"g.(0)crd? € 4
Cnhst: (V_) el¢,

From Eq.(16), we obtain
where ¢p=arg(Cy) is an arbitrary phase angle. Note that the

an+1(k)= = (1+ €)an(k) + 281 (kg)an(0)an(k) amplitude has the expected’? behavior. Linearizing about
— . ) c=hg we see that
+2f(ko)ag(2k)ay (k) + 3ylan(k)|*an(k),
(23) Cn+1=(1—2€)cn+ thst

Therefore, fore<1/2 the fixed pointc,= hg is stable. Fur-
ther, the solutiort, relaxes to this value exponentially on a
time scale 1/(2)~ , justifying our earlier claim that the
dynamics of the mode amplitudsg,(k) is on a time scaler
over both the growth stage and the saturation stage.

The periodic pattern corresponding to this solution is a
period-2 stripe given by

where we have kept all terms up to oragi(k)®. Using the
expressions in Eq(22) in Eqg. (23), and collecting all the
terms that have a time dependence of the foral]", we

obtain

Cni1=(1+€)c,— 2B (ko)[2G-(0)(|cn| 2cnt | dn|%cn)
+0-(2ko) (| cql?cn+|dy|%ct) + 2 (0) 12

fn(X)=§*+(—1)“(V—) [elkx+d) 4 gmitkxtd]1 O(e).
) (26

X (|dn|?cy+d3cE) + 2G5 (2ko) Cold|?]
+3y(|cn|?ch+2|dn|?c,+ d2ck). (24)

We will conclude our discussion of the case of a single
This equation can be written dominant mode with a few remarks.
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(1) From Egs.(23) and (22), we see that,(k)— —a,(k), Ip(myky = moky == mgky) = 1.
a,(0)—a,(0), anda,(2k)—a,(2k) are exact symmetries

of this system of equations to this order. In fact, if we setKi,Kz,... Kqe C implies that

C={nk|neZ} and expand the map to arbitrary orderséin

— ¢, [cf. Eq.(15)], we can show that m,dedk,) +m, degk;) +---+my deg k)
ap(ky)—(—1)%9k)g (k) is even. As in Sec. IXA, this implies that
is an exact symmetry of the system. an(k)=(—1)"cn(k)

(2) Combining the above symmetry along with the dis-
crete time translation symmetiy,(k;) —a,+1(ky), we see
that an exact symmetry of the system is

if deg(k) is odd, and

an(k)=dn(k)
__1\dedkq)+1

Caky) = (= 1) e (ka), if deg(k) is even, for a solution that evolves from an initial

(ky)—(—1)%edkid (k). condition that is close to being spatially homogeneous.
FOI’ Cl:{kl’k27_k11_k2} and CZZ{O,k1+k2,kl

If the nonlinearity is confining, so that we expect a solution—Ka, —k;—Ko, —K;+Kp,2kq,2kp, —2kq, — 2k}, Eq. (21)

with small amplitudes as— 0, then the solution is invariant yields

under the above transformation, thatjgk,) =0 if deg(,)

is even andi,(k,) =0 if deg(k,) is odd. It is also true that an(0)=29-(0)[|cq(ky)|?|ca(ka)|?,
any solution that evolves from an initial state that is close to o
a spatially homogeneous state will have these properties. an(kyt+kz)=29_[2ko cog 0/2)]cn(ky)Cn(ks),
(3) The symmetries noted in remark$) and (2) above . ] .
are a reflection of the fact that, f@={nk|ne 7}, an(ky—kz)=29_[2kosin(6/2) Jen(ky)c (ka),  (27)
| p(Maky £ mokp®- - =mgkg) =1, an(2ky) =g (2ko)ci(Ky),
with kl ,k2 N ,kq eC, |mp||es that an(2k2) :a—(ZKO)Cﬁ(kZ)v

m, degky) +m; degky) +---+mg degkg) and the amplitudes of the other mode<Opn are obtained by

complex conjugating the appropriate expression from the list

is even. This, along with Eq16) directly implies the claims .
g q16 yimp above. From Eq(16), we obtain

in remark(1).
(4) The lowest order of the nonlinearities in E§3) com-

ing from the terms witha,(0) anda,(2k) is a,(k)3. Con- ant1(ky) == (1+ €)an(ky) + 2Bt (ko)[an(0)an(ky)

sequently, in order to keep consistency and retain all terms of +a(2k)a* (k) +a(k+k.)a* (k

this order, we have to expand the nonlinear map in(EB) An(2ky)an (k) +an(ky ti)an (kz)

to the third order. +a,(ki—Kz)an(ky) 1+ 3y]an(ky)|2an(ky),
(5) The explicit form of the stripe solution in Eq26) (28)

displays the time and space translation invariances, the rota- 5 .. (k,)=—(1+ €)a,(K,) + 2 8f(Ko)[a,(0)an(K»)
tional invariance, and the invariance under reflections of the
set of all stripe solutions. We can use the translation invari- +ay(2ky)ag (kp) +an(ka+ky)ag (kq)

ance to choose a solution whege=0, so thatc is real.
+an(ko—kp)an(ky)]+37]an(ko)[%an(ky),

B. Two dominant modes where we retain all terms up to order

We now consider the case where there are two dominarmax|ay(ki)|,|an(kz)|13.

modesk,; and k, so thatC,;={kq,k,,—kq,—k,}. In this Define v, by
case, we hav€={m;k;+myk,|m;,m, e 7Z}. o
Due to the symmetries of the system under rotations and ve=4Bf(ko){g_(0)+g_[2kysin(6/2)]

reflections, we have the freedom to relabbgl as —k,.
Therefore, we can always chookg and k, such thaté
=cos Y(|k,-k|/k3) is in the rangd0, 7/2]. By the symme-
tries of the system(C is completely characterized by the
angle 6.

For the two dominant modes assumption to be consistent,
we need that]|m;k;+myky| —ko|>1/1 unless|my|+|m,)|

+9_[2kycodq 6/2)]}. (29

Note thatv. is a function of 6. Using this definition, the
definition of v In Eq. (25, the fact that a,(k;)

=(—1)"cy(k;) fori=1 and 2, and simplifying the results of
Substltutlng Eq(27) into Eq. (28) we obtain

;V%/é;l'shlcsh\évcljllsgt?ntrtlkj‘?s fg:’gi[w/SJr 2N, 7/2], and we will Cor1(Ky)= (14 €)Cn(ky) —[ veCnlky)|?
If 6is chosen in this rangeS has the property that + v¢|cn(Kz)|2]cn(ky).
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The equation foc,(k,) is obtained from the above equation  We can also look at solutions witkh=y,. These solu-
by the symmetry transformatiorls,—k, andk,—k;. To  tions havex,=y, for all n, so that the linex=y is also an
simplify the notation, we setx,=c,(k;)e %1 and y, invariant manifold for the system. The evolutionxgfis then
=cp(ky)e "2, where ¢,=ardco(k;)] and ¢, given by

=ardcy(ks)]. X, andy, are real for alln, and they obey the

equations Xn+1= (1+ €)Xy — (vs+ Vo)X
Xne1=(1+ e)xn—(vSXﬁJr chﬁ)xm If v.+vs>0, the amplitudes will grow and saturate at
2 2 (30 e |12
Yn+1=(1+€)Yn— (vsyn+ veXp)Yn - x=y=h,=
' vst v

If vs>0, vs+v.>0, the amplitudex, andy,, will grow on

the slow scalesn and then saturate. We can check for the stability of this state to perturbations
We will first determine all the fixed point of the system in which makex,#y,. Linearizing about this fixed point, we

Eq. (30). The fixed points of the system far,# v, are the  obtain

origin (x,y)=(0,0), thestripe solutions

.=l 1 2vge 2v.e
(X,y)=(£hg,0), (xy)=(0,£hg), LA R AR A
and therhombus solutions 5 (1 2vee 2v€ 5
=|1- — X, .
(X,Y)=(*hy hy), T wetwe] T vt

From this, we see that this fixed point has an eigendirection
8y,= — OX, yielding the eigenvalue

where

€ 1/2

h,,= Ve™ Vg
vt v =1+ .
c s )\2 1+2e€ Vc+ Ve
If v.=ws, the fixed points are the origi0, 0) and all the o ) - o )
points on the circle This yields instability(stability) if v.>vs (v.<wg). The ei-
genvalue corresponding to the directiog,= 6X, is As=1
€ 2¢ —2¢€, so that the fixed point is always stable to perturbations

XetyPm— = with 8x= dy.
s sore Finally, we consider the circle of fixed points in the case
The fixed point at0, 0) has two unstable directions. Set- Vs= ¥c- In this casex,=py, implies thatx, = py, for all n

ting yo="0 will bring us back to the case of one dominant and allp. T_herefore, all the rays=py are invariant under
mode, which was considered in S€tXA). In this case, the dynamics. The evolution of, is given by
yn=0 for all n showing thaty=0 is an invariant manifold
for the dynamics. From the discussion in Sec. IX A, we know
that the soluti.on converges to the stripe solution that is given =(1+e)x,— (1+ p_z)vsxﬁ-
by a fixed point wherex=hg andy=0. We can now check
for the stability of this state to perturbations which introduceThe amplitudes will therefore grow and saturate at
a second mode. Linearizing about this fixed point, we obtain

Xnt1=(1+ €)X, — (v p 20X

€ 1/2
OXn11=(1—2€) 0%y, X=py=p a v,
S
Syni1=|1+e€ Vs VC) sy In this case, the circle of fixed points are stable to perturba-
" Vs " tions that movex,y) off the circle, i.e., perturbations in the

direction 6x,= pdy, with an eigenvalue.;=1—2¢, but the

Consequently, the stripe solution is stable to the introductiojirection 8y,= — pdX, along the circle is a neutral direction.
of a second mode if./vs>1. Also, as we vary the param-  \we summarize the results of this analysis in the phase
eters, it will firs.t become unstable to a mode correspondinqbortraitS in Fig. 12. Figure 1) depicts the dynamics for the
to the angled with the smallest value ob./vs. The eigen-  casey,=v,. The circle of fixed points is an invariant mani-
value for perturbations in the directioy,=0 is As=1  fo|d for the dynamics. lfe<1/2, the eigenvalue in the stable
—2¢, and the eigenvalue corresponding to the directiongjrection A\ y=1—2¢>0. In this case, points that start out
ox,=0 is given by inside the circle of fixed points remain inside it on iterating

the in Eqg.(30). x,, andy,, increase monotonically and satu-
1+ ¢ Vs™ ”C) rate at the fixed poink=py=pve/[(1+ pz) vg], wherep

A=
! Vs =Xo/Yo, and the corresponding pattern is given by
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show the region bounded by the invariant curxesO and
y=0, and pieces of the unstable manifolds of the stripe so-
lutionsx=h,,, y=0, andx=0, y=h,. In this case, all ini-

®

- - tial conditionsxy>0 andyy>0, with x, andy, small, lead
to solutions that saturate &ty =h,,. The rhombus solution
is given by

1/2

€

[gi(kixt d1) 4 g ilkyx+ )

En(X) =& +(=1)"

Vst Ve

© @ teikerxtda) 4 gilkext 4] 1 O(e), (32

where ¢,=ardcyk,)] and o,=ardcy(ky)], as defined
above. The difference between the regimesiQ<wvg and
—vs<v.<0 are in the transient growth stage and we will
consider this below.

In our discussion up to this point, we have assumed that
the angled, which determine&, has been given. In order to

FIG. 12. Schematic phase portraits for the system in(B@.in  completely describe the patterns with two dominant modes,
various parameter regime§d) vs=v.. (b) vs<v.. (©) vs>v.  we therefore need to consider the question of what factors
>0. (d) —vs<v,<0. The dashed line irta) is a circle of fixed  determine the anglé. In this connection, we will make the

X x

points. following observations.
(1) When the stripe state goes unstable on varying param-
N € 12 eters, an instability occurs whewy crosses from fromwg
En(¥) =& +(=1) vd | co(k)Z+ [co(ka) 2] <, to v<>v.. Consequently, the first additional mode that
, A , goes unstable corresponds t@ avith the smallest value of
X [colky)e 1+ cg(ky)e™ KX+ co(kp)eke™ v

c-
T et (ky)e X+ O(e). (31) (2) From the dynamics in E¢30), we see that

— 2 2
The circle of fixed points for the case= v, persists as Xn#1= (14 €= v = veyn)Xn,
an invariant manifold even when,# vg. It now becomes
orbits connecting the stripe solutiong,y)=(=*hg,0) and
(x,y)=(0,£hg), with the rhombus solutions x(y)=
(xhy,,=hy). The eigenvalues for the linearization near th

and a similar equation is obeyed By . In the initial stage,
wherex, andy, are much smaller tha®(\/e), the initial
egrowth rate is I e, independent of, and consequently of

stripe solution arex.=1-2¢ and \;=1+ e(ve—rJ)/v,. 0 However, once the modes grow so thﬁtny(\/E), it
The eigenvalues for the linearization near the rhombus soldS cléar that the mode with the largest “nonlinear” growth
tion arexg=1—2e€ and\; =1+ 2e(v,— v)/(ve+ ve). rate is the one for which takes on its smallest possible
Figureslzb) depicts the dynamicc:s for the ca;g< , value. Consequently, if we start from an initial state that is a
..

For sufficiently smalle<1/2 and v,<v,, we have G<\, small random perturbation of a spatially uniform state and

<1, 0<\;<1, and\,>1. The stripe solution is therefore W€ @€ in a parameter regime wherg>vc, so that the

stable, and the rhombus solution has one unstable directioff10MPUs solution is stable, we expect that the dynamics wil

Since all the eigenvalues are positive, the map in @6) select a rhombus_ s_oIL_Jtlon with wave vectagsandk, such

maps regions bounded by invariant curves into themselved@t the angley minimizes v, .

In Fig. 12b), we show the region bounded by the invariant _ (3) In @ parameter regime where,c<vs, we see from

curvesx=0 and y=0 and the unstable manifold of the Eq. (24) that the dynamics of a stripe pattern is given by

rhombus solutiox=y=h,,. It is clear that all initial condi-

tions such thaky,>y,>0 lead to solutions that asymptote to Xn+1=(1+ e~ stﬁ)xn .

x=hg andy=0. Similarly, initial conditionsy,>x,>0 lead

to solutions that asymptote ty=hg and x=0. The Sincev.>0, the two preceding equations imply that the non-

asymptotic pattern is a stripe pattern and it is described bijinear growth rate for the stripe solution is larger than that of

Eq. (26). the rhombus solution. However, the parameters are such that
Figure 12c) is the phase portrait whens>v.>0, and the stripe is unstable. Therefore, in this regime, we expect an

Fig. 12d) is the phase portrait for.<0, vs+v.>0. For initial transient where the pattern evolves so that it looks like

sufficiently smalle<1/2 andv>v., we have B<\,<1, astripe solution, i.ey,~0 andx, will increase and saturate.

N1>1, and G<\,< 1. The stripe solution is unstable to the The solution will then evolves to the rhombus solution that is

rhombus solution in both these regimes. All the eigenvaluesisymptotically stable. If, howeve <0, but vs>—v; so

are again positive and regions bounded by invariant curvethat v,+ v.>0, the nonlinear growth rate for the rhombus

map into themselves by E@30). Figures 12c) and 12d), solution is larger. Therefore, in the initial transient growth,
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the solution will look like a rhombus solution, i.e., the solu- 1 v
tion will quickly becomex,~y,, after which both the modes TL
will grow till they saturate.

(4) The preceding discussion invoking the concept of &, here ) | is the relevant unstable eigenvalue ane (v
“nonlinear” growth rate is not rigorous. However, in this )/2;1, ~v, near the transition. Consequently ifswe
case we can justify the conclusions rigorously. In the regime,,;qive the solution for a finite ime andT< T, We will be

where the rhombus solution is stable, the eigenvalues for the, o regime where both the stripe and the squanembus
linearized d2ynam|(;:s near the fixed point,¥)=(hrm.Nm)  solutions appear to be stable over this time scale. This ex-
are \s=1-2¢ and Ay =1—2€(vs—vc)/(vs+vc). ASYMP-  plaing why we see a region with coexisting squares and
totically, the solutionsx, andy, will approach the fixed gyines in the phase diagraffig. 4). From the above con-
point along the direction corresponding to the less stablgjgerations, it is clear that the width of this region in param-
(largey eigenvalue. Consequently, fog=>0, A<\, sothal  gter space will decrease as the length of the run is increased
the solutions approach the fixed point along the eigendirecs,q it is a typical parameter, the width of the coexistence
tion corresponding td,, the unstable manifold of the stripe region Ap, is given by the requirement/7 ~1, and we

solution. Therefore, the evolution of an arbitrary small initial {,arefore predict tha p will scale with T, the length of the
condition will consist of a transient growth phase where the.,, and the supercriticality as ’

solution approaches the stripe fixed point as illustrated in
Fig. 12c). For v.<0, \,<\¢ and the solutions approach the |ve— 4|
fixed point along the invariant manifold=y, as illustrated Ap~|vs—v|~ L~(6T)‘1.
in Fig. 12d), and there is no transient stripe. v
From the above remarks, we expect that the value® of

N)\u_lw E|Vs_Vc|,

selected corresponds to the smallest valuerof From Eq. C. Hexagons near onset
'(29)t2 ftollows that v is symmetric undeg— 7 — 6, imply- To study hexagonal patterns, we consider the case of three
Ing tha dominant modesk;, ky, and ks, with |kq|=|k,|=|ks|

=ky, and the angles between any pair of these vectors being
dv, 27/3. This implies that

k1+ k2+ k3:0

at =m/2. Therefore, generically, there is a codimensionin this case,C;={k;,k,,ks,—k;,—ky,—k3}. Since k;
zero set of parameter values such thaattains its minimum  +k,= —ks and degk,) =degk,) =degks) =1,
at 6= /2, corresponding to the formation of square patterns.

Hence we expect that there are typical systems for which Ip(myky £ myky == mgky) =1,
square patterns form genericallye., without any fine tuning
of parameters with kq,k»,... kqe C, does not imply that
We conclude our discussion of patterns with two domi-
nant modes by discussing the nature of the transition be- my deg k) +mydegky) +- - +my degkq)

tween nonzero amplitude stripes and squdoesin general

rhombi at vs=1v,. In the context of the two mode descrip- is even, in contrast to the cases with one or two dominant

tion of both these patterns, away from onset, this transition ignodes. Consequently, we can no longer assumeati(&f)

first order (discontinuous since a state with one mode am- =Cn(k) if deg(k) is odd anda,(k)=d,(k) if deg(k) is

plitude being zerdthe stripe solutiongoes to a state with even.

both modes having equal and nonzero amplituties square We haveC,={0,*2ky,*2k,,*+ 2k3, * (k;—Kkz), £ (k;

or rhombus solution However, contrary to what one would —kz),*(ks—k;)}. We can obtain expressions for the am-

expect for a first order transition, this transition is not hys-plitudes of the modes i€, using Eq.(21), and we do this in

teretic. Both stripe to squar@hombug and squargrhom-  Appendix A. For our purposes, it suffices to consider the

bus to stripe transitions occur at;=wv.. This is a conse- homogeneity and the symmetries of the expressions that are

quence of the existence of a continuous family ofobtainedsee Eq(Al)]. If geC,, we have the following

intermediate solutiongthe circle of fixed points avs= ) (1) The lowest order terms in the expressions ¢g(q)

connecting the stripe and the squareombus solutions. andd,(q) are quadratic ifc,(k;),d.(k;)},ie{1,2,3 (the
Although the transition is nonhysteretic, if we look at amplitudes of the modes i@,).

asymptotic states it will be effectively hysteretic if we only  (2) d,(q) is invariant under the transformatioa,(k;)

look at the evolution of the system for finite time intervals. —d,(k;),c.(ki)— —cn(k;), which is equivalent to saying

For vs>v., where the stripe solution is unstable, the un-that d,(q) is invariant(even for time translations by one

stable eigenvalue is given by, =1+ e(vs—v.)/vs. Also, time step.

for vs<wv., where the squar@ghombus$ solution is unstable, (3) cn(q)——cn(g) under the transformatiord,(k;)
the unstable eigenvalue i5,=1+2¢e(v,—ve)l(vetvs). —dn(k;),ch(kj)— —cn(k;), which is equivalent to saying
Therefore, the time for the transition between the two statethat c,,(q) changes sigriis odd under time translations by
is given by one time step.
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(4) If the amplitudes{c,(k;),d.(ki)},ie{1,2,3 are real, ec=(487f(ko)]2+Dbs)c?,
d,(q) andc,(q) are also real.
From Eq.(16), we obtain so that
an+1(ky)=—(1+€)an(ky)+28f (ko) af (ko) a (k) € 12
C=\—FT——— —
+an(0)ag(ky) +an(2ky)ay (k) 487 (ko) ]2+ b
+an(ki—kp)an(ky) +an(ky—kz)an(ks)] and
+37|an(kl)|2an(k1): (33) .
. Bf(ko)e
where we retain all terms up to order d=——.
max|a,(k1)|,|an(k)|,|an(ks)|]3. The expressions for 487 f(kg) ]2+ bs
a,.1(ks) anda,, 1(ks) can be obtained from the above ex- . _ _
pression by cyclically permuting;, k,, andks. Note that We will now look at the dynamics of patterns with three

the expression on the right hand side of E28) has a term modes, that are described by E§3). Based on the above
a* (ky)a* (k) that is quadratic in the amplitudes of the analysis, we will assume that the amplitudgsare real, and
modes inC,, in contrast to the corresponding expressionsthat ¢,~0O(\/e) and d,~O(e). Using this ansatz in Egs.
for the case of one dominant mode in E@3) and two (33) and(Al), keeping terms to the lowest order & and
dominant modes in Eq(28), which are both cubic in the looking for solutions that evolve on the slow scale, we

amplitudes of the modes i@, . obtain the equations

We will look for fixed points corresponding to hexagonal _
patterns, that is, for solutions witha,(k;)=a,(k,) dn+1(k1) = Bf(kg)cn(ka)cn(ks),
=an(ks), dnii(ky)=dn(ky)=d and cn(kq)=—cn(ky) (35
=(—1)""1c. Further, we will require thatl andc are real, Chr1(ky)=(1+ e)cn(kl)—[vscﬁ(kl)Jr vhcﬁ(kz)
which is a consistent requirement, since if the amplitudes are )
real at time stem, they will stay real in the subsequent +wncn(ks)Jen(ky),

evolution. Substituting this ansatz in E§3), and separating ) . )
the terms with and without a time dependence of the formvherews is as defined in Eq25) and

(—=1)", we obtain _ o _
_ vh=4pf(Ko)[g-(0)+g_(v3Ko) +Bf(ko)].  (36)
d=—(1+e)d+2Bf(ko)(d?+c?)+ Ng(c,d),
(34) The equations for the amplitudes(k,) anda,(ks) can be

c=(1+e)c—4Bf(ky)cd+Ny(c,d), obtained from Eq(35) by cyclically permutingk,, k,, and
ks.
where N and N, are of degree 3 ifc,d}, N is even in Equation(35) was obtained by making a scaling ansatz
C[Ne(—c,d)=Ng(c,d)], and Ny is odd in c[Ny(—c,d) for the amplitudes and keeping the lowest order terms. We
=—Ny(c,d)]. derive it rigorously using the method of multiple time scales
From the first equation, we obtain [34] and an averaging procedure in RES3].
- If we setx,=c,(ky), Ya=Cn(ky), and z,=c,(k3), we
d= 23 (ko) (d?+c?)+Ng(c,d) have
B 2+e€ '

2 2 2
Xpy1= (1+€)Xp— (veXpt+ vhynt thn)xn )
Since we are looking for solutions such ttgtd—0 ase

—0, it follows thatd?</|d| for small e. Also, Ng(c,d) is of Yoi1=(1+€)yn— (vey2+ vpx2+ vhZ2)yn, (37
degree 3 and is even i) so thatN(c,d) =Lblcz+_bzd2)d
whereb; andb, have O(1) (finite) limits b; andb, ase Zni1=(1+ €) 2y~ (veZ2t vpXe+ vpy2) z,.

—0. Consequently, for smad, to lowest order we have
If vs>0,v5+2v,>0, the amplitudes,,, vy, andz, will grow

d=Bf(ko)c on the slow scalen and then saturate.
We will now determine all the fixed points and their sta-
Substituting this into the second equation, we have bility. The origin (x,y,z)=(0,0,0) is unstable and has three
_ unstable eigenvalues, all equal te-&.
c=(1+e)c—4Bf(ko)1°c®+Ny(c,d). The stripe solutionsare obtained by setting two of the

) ) , ) amplitudes, say, andz, equal to zero. This is an invariant
Since No(c,d) is of degree 3 and is odd i, No(C,d)  manifold for the system. Setting,=0 andz,=0 reduces
= — (bsc*+b,d*)c, wherebs andb, haveO(1) limits bs  the system to the case considered in Sec. IX A. A stripe fixed
andb, as e—0. Sinced=0(c?), to lowest order ine, we  point is given byx=hg,y=2z=0. Linearizing Eq(37) about
have this fixed point, we obtain
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Xn+1=(1—2€) 6Xp,

v
1+e—

OYni1=

_”h)ayn,

1+e€

Vs™ Vh
) 0z,.
Vs

The eigendirectiondy,= 6§z,=0 has an eigenvalua ;=1
—2e and is always stable. The eigendirectiofis,= 6z,
=0 andéx,= déy,=0 both have the eigenvalue

0Zp41=

Vs— Vp
)\1=1+E S

Vs

Consequently, the stripe solutions are stableif-v4, and
are unstable otherwise.

We can also look at solutions witky=Yy, and zo=
These solutions have,=y,, andz,=0 for all n, so that the
line wherex=y andz=0 is also an invariant manifold for
the system. The evolution of, is then given by

Xny1=(1+€)Xp—(vst Vh)xg'
Since v, +vg>0 from the assumptions that;>0 and v
+2v,>0, the amplitudes will grow and saturate at

€ 1/2

X=y=hm= vst vy
S

Linearizing Eq.(37) about this fixed point, we obtain

5 1 2vge 2vn€
Nt vt vy vetv, o0
1 2vge 2vn€
OYn+1= vty O vty
Vs™ Ph
0z, 1=|1+e€ 0z, .
n+1 V5+Vh n

Calculating the eigenvalues and the eigenvectors about this

fixed point, we see thabx,= 8y, and 6z,=0 are always
stable directions, and the corresponding eigenvalues, is
=1-2e. The directionséx,= — dy, and 6z,=0 have an
eigenvalue

A= 14260
= € ,
P vt v

and the directiorsx,,= 8y,=0 has an eigenvalue

Vg— V

=1+e€ .
vst vy

Since\,>0 for v,>vg and\, >0 for vs> vy, generically,

PHYSICAL REVIEW E 63 046202

If Xo=Yo=20,Xn=Yn=2, for all n, so that the linex=y
=z is an invariant manifold for the system. In this casg,
satisfies

Xn+1= (14 €)Xy~ (vs+ 2vp)X3

Sincevg+ 2v,>0, the amplitudes will grow and saturate at
6 12
==t )
Linearizing Eq.(37) about this fixed point and calculating
the eigenvalues and eigenvectors about this fixed point, we
see thatox,= dy,= 6z, is always a stable direction, and the
corresponding eigenvalue }s,=1—2e. The directionssx,,

=-6Y,,62,=0 and &x,=—8z,,0y,=0 both have the
same eigenvalue
Np=1+2e—n T
€ vt 2y,

Therefore, the hexagon solutions are stable whenv,,
Finally, we can look at the casge=v;,. In this case, there
is a sphere of fixed points given by

2.2 2 €
Xe+ye+z =2
This sphere includes the stripe, rhombus, and hexagon solu-
tions, and it gives continuous families of solutions connect-
ing the various fixed points. The rhombus solutions are ge-
nerically linearly unstable. The analysis of the bifurcations
between the stripe and hexagon solutions is similar to the
analysis in Sec. IXB. In particular, the bifurcation between
these two patterns occurs ai=vy,, and is nonhysteretic.
However, since\; and \, tend to zero linearly ivs— v,
for runs of finite lengthT, there will be a region of coexist-
ence in 1the parameter space, whose width is giver\py
~(eT) .

From the above analysis, we see that the hexagon solution
is given by
1/1

(K
En(X)= &, + B(O)

+(—)(

vt 2vy
X[eikl~x+efikl-x_‘_eikz-x_'_eflkzx

+eka X+ e ke X1+ O e). (39
Although we have exhibited an explicit hexagon solution
near onset, this is not observed either in the experimental
model or in our CCM model. This is a consequence of the
fact that the hexagon solution is linearly unstable near the

onset of the period-2 patterns. Figure 13 showysvg at
onset €=0) as a function ok./ky for our model.v,-vg is
piecewise constant, because of our choiﬁek)zsgn(@
—Kk?) is a piecewise constant function. Singg> v, for all
k./ko>1, it follows that the hexagon solutions are unstable

there is no range of parameter values for which the rhombuslose to onset(Note that this may not be a universal result

solutions are stable.

since it depends on the details that are specific to our model.

046202-20



PATTERN SELECTION IN EXTENDED PERIODICALLY ... PHYSICAL REVIEW B3 046202

o .
20§00,
POO0p 0O

1
4

4 | | QOHOCEEYE

i
o
»
O
o
D
A,
X
M
Yo
' -
Avat)

35 - 7 i '°'=v°\ 0.2

A
0]
»
»
.’o
!
o
{o~,
v

o

2 F ] FIG. 14. Hexagonal patterns with two frequency forcing. The
parameters are=1.7, p=0.05, p=2, and k./ko)?>=5.0.

We can model the effects of adding a subharmonic com-
3, 5 ponent to the forcing, by making the parametem our
(k/ky) model vary periodically with the time index as

1.5 : .
2

g

FIG. 13. v,-vs as a function ok, /k, at onset ¢=0). r,=r+(—21)"p. (39

We expect that hexagons are not observed in the experiFhe parametep is a measure of the subharmonic breaking of
ments, near the onset of period-2 patterns, for a similar reghe n—n+1 time translation invariancéut still giving an
son. n—n+2 time translation invariange

We will conclude our discussion of the hexagon solution  In this section, we will consider the crossover between the
by looking the symmetry properties of these solutions. In théehavior of the system with an—n+1 time translation
case of one- and two-mode solutions, using the translatioivariance, and the behavior with ar-n+2 but non—n
invariance of the system, we can always make the mode-1 time translation invariance. As we discuss in Sec. IXC,
amplitudes real and positive for even iterations. In contrastthe relevant small parameter for the regime with time trans-
k,+k,+k;=0 implies that the produd,(k;)a,(k,)as(ks) lation invariance is the supercriticality parameteitn order
is invariant under translations. Consequently, unlike in earto study the crossover behavior, it is useful to have a formu-
lier cases, we cannot assume that the amplitudes are reéition where we can vary the parameterand p indepen-
Also, even if the amplitudes are real, there are two distinctlently, keeping all the other parameters fixed. To achieve
phases corresponding to the case where the product is posiHs, we modify the definition of our model as
tive and when the product is negative. The case where the

product of the amplitudes is positive corresponds to the £n() =ML &n(X).1n],
peaked phase, where, as viewed from above, the pattern con- ,
sists of a triangular lattice of peaks. The case where the En1(X)=L[£(X)], (40)

roduct of the amplitudes is negative corresponds to the cel- . L
ﬁjlar phase Wherg as viewed g1]=r0m above F'Zhe pattern co where the nonlinear ma is given by Eq(5). Note that the
' ! ' jme dependence of the quantity, will, in general, break

sists of a honeycomblike structure. These two phases at +1 time t lati v of deg5|
distinct, and one cannot be obtained from the other by trans]—_:enlagar Op;rpaioéags;\;g?‘ E);gge(gr)y \Zhgg tr;:g spatial

lations, rotations, and reflections in the plane. : ; : )
P Fourier transform of the kernéis rotationally invariant, and
in the experiment, or in simulations with our model, near the 2\ ko

is given by

k 2

o
onset of the period-2 patterns. Experimentally, hexagons are _
observed near the onset of the period-2 patterns, by adding\yeé have introduced a parameter, such that|[f(ko)|
small subharmonic Component with frequenwz to the =exp(y/4) This is a generalization of the model considered
sinusoidal forcing with frequencfy [12], breaking the [,  in the preceding sections, which corresponds to setjing
time translation invariance of the dynamics. Also, hexagons=1. By varyingy, we can varyf (ky) and consequently vary
are observed in the experiments, and in our simulations, ariss, keepingr fixed.
ing as a supercritical bifurcation from the period-2 flat states Figure 14 shows the patterns obtained by numerical simu-
on decreasing the forcind’ in the experiments andin our  lations of the system given by Eg&9), (40), (5), (3), and
simulations, as illustrated, for example in Fig. Zhus, it  (41), starting from small amplitude random initial conditions.
would seem that, breaking thef3/(or n—n+1) time trans- Note that breaking the time translation invariance gives
lation symmetry of the system, will increase the stability of stable hexagon patterns, in a parameter regime where stripes
the hexagon solutions, thereby making them observable. are otherwise stable, as in the experimdit.

D. Two frequency forcing
1

2

2
As we observed in Sec. IXC, hexagons are not observed f_(k):eXp{Z(i)

]wq@—Wy (42)
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We will now analyze the patterns, in the situation where
the time translation invariance is broken. We begin by look-

ing for a stable period-2 orbit for the dynamics

Enr1=M(&y,1p),

with r, given by Eq.(39). If (=&, is a stable fixed point for
the mapM(.,r), for sufficiently smallp, a stable period-2
orbit is given by¢,=¢; for n odd andé,= ¢, for n even,
with

Mr(f* ,I’)
H—)\(r)lﬁo(ﬂz),

§=&—(—1)
fori=1 and 2, wheréM,(&,r) is the partial derivative oM
with respect tar, and\ (r) =M (¢, ,r) is as defined in Sec.
VIIl. We derive this relation in Appendix Bsee Eq.(B1)].

PHYSICAL REVIEW E 63 046202

N, f(kg)=—[1+(—1)"A 1re
n ( 0)_ [ ( ) ]m
—(1+e€) 1 n(l-l—e)A 43
1-AZ (-1 J1-AZ'

Following a similar procedure to the case of single fre-
quency forcing, one can derive the equations for the mode
amplitudes with three dominant modes, for two frequency
forcing. Instead of doing this rigorously, we will derive the
appropriate equation from symmetry considerations and the
requirement that they reduce to the correspondkrgown)
equations for the case of single frequency forcing\as 0.

As in Sec. IX C, we consider the case with three dominant
modes with wave vectork,, k,, and ks, wherek;+k,
+ks;=0 and |k;|=|k,|=1|ks|=0. The amplitudes of these

A spatially homogeneous solution for the system is theremodes are given by, (k;) =d,(k;) + (—1)"c,(k;) fori=1,

fore given by

&1t &

£.(x) = ; &Er— &1

5>

+(—=D"

(42

We need to consider the linearization about this solution.

Nl=|\/|§(§1,l‘—p) and N2=M§(§2,r+P), as we ShOW in
Appendix B[see Eq.(B2)],

i MM, 2
Ni=A(r)+(—-1) Mgr—H—)\(r) p+0O(p?),

where the partial derivatives are evaluated &f ,f). The
stability index\, is defined by

)\2: NlNz,
and the symmetry breaking paramefeis defined by

Nz—N,

A:N1+N2'

In terms of\, and A, we have

Ni=(1+(-1)'a) ,

) 1/2
_(1 A?)

fori=1 and 2N, N,—A(r) asA—0. As we are interested
in the parameter regime close to the onset of period-2 pat-
terns, we have to take the negative square root in the above

equation, sinca(r)f_(ko) =—1 at onset.

2, and 3. Using the expression in E43), and

dns2(k)+ (= 1) " eqsa(ki) =Nglda(ki) + (= 1)"cq(ki)],
for the linear growth, we obtain the linearized equations
: (1+e)

Cn+1(ki)~ﬁ

dnt1(ky)~=—Acy(kj) —dy(ky),

cn(ki)+Adq(ky),

by expanding and collecting the terms with and without a
time dependence of the form—(1)", and assuming that
|d,|<]|cp|. The full equation for these amplitudes should be
invariant under rotations, and under the transformation

A——A,cn(kj)— —cn(ki),dn(ki) —dn(k;).

Also, they should reduce to E5) asA—0. These require-
ments significantly constrain the possible forms of the equa-
tions governing the evolution of the amplitudes. In particu-
lar, the lowest order equations for the dynamics of the
amplitudes are given by

dn1(ke) = BF (ko) Cn(ka)Cn(ks) + veAcy(ky),
(44)
(1+e€)

V1-AZ
+ A Cy(Ky)Co(Ka) —[ w5C3(Kq) + vpCa(k2)

+wpca(ka)Icn(ky).

Cnr1(ky)= Cn(ky) +viAdy(ky)

We now consider the evolution of small, spatially varying
perturbations, about the spatially homogeneous solutions.
The supercriticality parameteris given by the growth rate Note that these equations, as well as expressions;fand
of the most unstable modes, so that vy, can be obtained by a rigorous derivation through a
multiple-scale analysi§33]. The quantitiesvs, »,,, 8, and
f(k) are as defined earlier. These quantities as well as the
quantitiesve, v¢, andrvy depend on the mapl, the linear
and varyingy keeping all the other parameters fixed enablesoperatorL, and the parameter, but are independent of the
us to varye. The growth rate for the most unstable mode parameterg andA (more precisely, they have finite nonzero
now depends on the time index and is given by limits ase—0 andA—0).

(1+ €)?=N,[f(ko) 2=\, exp y/2),

046202-22



PATTERN SELECTION IN EXTENDED PERIODICALLY ... PHYSICAL REVIEW B3 046202

— r=175k/k,=30 x=A4cn(ky)en(kz)Cn(ks)

&—@ r=170,k/k,=30 o i _
A—A r=170,kJk,=50 is invariant under the transformatiod— —A, c,(k;)—

12

——=- ScalingA~¢ —cn(ki), dn(kj)—d,(k;), which is a symmetry for the dy-
namical equations. Consequently, there are no symmetry re-
quirements forcingy) to be zero, wheréy) is the average
- value of y over all the stable solutions for a given set of
parameters. This is in contrast to the case of the hexagons
with a single frequency forcing, where symmetry require-
ments imply that both the peaked and the cellular phases are
equally likely to be observed at any given time indgsince
the average value of the produgi(k,)c,(k,)c,(ks) has to
be zero by the time translation invariance{}p is nonzero,
we could be in a regime where one kind of hexagonal pattern
. . (say peaked on odd oscillations stable while the other
107 kind (in this case, peaked on even cyglasunstable. In our
simulations, we are always in this regime, and we hgye

FIG. 15. Crossover between the stripe patterns and the hexa=0, SO that the peaked phase occurs after the iteration with
gons. The dashed line is the theoretical scaling €Y and the  the larger value ofN|, that is, the larger growth rate.
symbols are numerically obtained values of the parameters at the
bifurcation between the stripe patterns and the hexagon patterns. E. Fronts and localized patterns

107"

_2

The solutions for the single frequency forcing were ob- L€t P(x,n) be an asymptotic stable “global” pattern for

tained by the scaling ansatiz=0(e) andc,=O(\/e). Sub- the dynamics in a certain parameter regime, and lee the
stituting this ansatz into Eq44), we see that this scaling is S€t Of all the solutiong,(x) that are equivalent t& modulo

consistent ifA < \/e. For A> e, consistent scalings ad, € Symmetries of the system. ¥ is the transformation
—0(A?) andc,=0(A), and there is a crossover between 9r0UP of S, as we discuss in Sec. VII? is a subgroup of

—7 2 .
these two scaling regimes when/e. G=7XR“x0(2), the symmetry group for the equations

In the regimee> A?, the effect of breaking the time trans- governing the dynamics. Singeis a discrete groufi/ is not

lation invariance is negligible, and the behavior of the Sys_connected. Consequentl, is not necessarily connected ei-

R . . : ther.
tem is similar to the behavior with = 0. In particular, we do As we argue in Sec. VIII, for long times, the solution
not expect to see stable hexagons in this regime. In contrasg, () is given b ' ' '
for e<A?, the dynamics is dominated by the effects of the®" 9 y
symmetry breaking. In this regime, stable hexagons are ob- €n(X)~ S0P,
served, as in the experimerjts2]. ’
Figure 15 is a numerically obtained bifurcation diagram,\m1ere S, is the action ofgeP on the patternP, and

for the transition between stripe patterns and hexagons asg, 1) < is the field of the local degrees of freedom, that
functpn of the supercriticality parameteand the symmgtry varies only on time scaleB> 7, and, away from the domain
breaking parameteA. Note that the results are consistent, 1< on length scales>k

with our prediction that the crossover occurs when /2. We first consider the é)allse thtis connected. For any
In the experiments, if th&nondimensionalizedtwo fre- initial configuration of the local degrees of freedom, it is

quency driving is given by possible to havg(x,n)—g, for all x asn—< in a continu-

ous fashior36]. In this setting, we expect that the domains
will coarsen with some domains growing at the expense of
the others, until, the patterns asymptotically converges to a
global patterrsg*[P] on the entire domain.

We will now consider the case in whicR is not con-
7 nected. Since the local degrees of freedom change continu-
A~y eI-T,. ously on each domain, for akl in a domainD, §(x,n) is in
* the same component @&. We consider an initial configura-
The preceding analysis would predict that the scalinggat ~ tion whereg(x;,0) andg(x,,0) are in different components

the onset of hexagon patterns with two frequency forcing isof P for points in two different domain®, andD,. We also
assume that the domaiis; andD, are large and therefore

n~(T-T,)"2 contain many points that are at distantes, from the do-

main boundaries. In this situation, if the stable patteris
We conclude this section with a discussion of the symmeattracting, for sufficiently large domains the dynamics in the
tries of the hexagons that are observed with two frequencinterior of the domain is unaffected by the other domains,
forcing. The quantity and the local degrees of freedom in the interior will not vary

h(t)=T sin(2mft) + 7 sin( fqt),

and the onset of period-&tripe patterns is al’=1", , we
have
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significantly over time. In particular, they always remain in asquares and the period-1 homogeneous state are both linearly
single component gP. We call the boundary separating two stable. In this regime, as depicted in Fig. 6, we observe lo-
domains dront, as the patterns on either side of the bound-calized, period-2 structures on a homogeneous period-1
ary correspond to different components7af background, that are similar to the oscillons seen in the ex-
From our discussion of the symmetries of the variousperiments[11,12. These localized structures are distinct
period-2 patterned states near onset, we see that any strif@m the fronts and domains that we discussed earlier, in
(squarg solution can be obtained from any other stripethalt: thg size of thes.e chahzed strugtures is of the order of
(squarg solution by appropriate translations and rotationsKo > unlike the domains in patterns with fronts, which had to
without any time translations or spatial reflections. Since robe of a sizel>k; *. These states cannot be analyzed using
tations and translations generate continuous grofpss the weakly nonlinear analysis, of Secs. IXA-IXD, since the
connected for these solutions, and fronts do not occur in thescillon states do not evolve continuously from a homoge-
period-2 stripes and squares near onset. Although there mdlgous state as a parameter is varied. An analysis of these
be domains of different stripe orientation in the intermediatestructures may require a new set of ideas, and it presents a
regime, we do not have fronts, sin@consists of a single Vvery interesting theoretical challenge.
component for these patterns. It is observed, both in experi-

ments and simulations, that the solution asymptotically con- X. DISCUSSION
verges to a “global” stable pattern, that is a pattern where . S )
the Orientations are |ined up on the entire region_ The Spll’lt of our model is similar to that of other gene”c

For hexagon solutions, the peaked phase cannot be trandodels of spatiotemporal dynamics, and may be regarded
formed into a cellular phase by translations or rotations, an@S lying between continuous time—continuous space models
one needs a time translation to generate the set of all th¢-d., the Swift-Hohenberg and the complex Ginzburg-
transformations between equivalent hexagon solutions. Thusandau equationsand coupled map lattice mode]87,38.
the transformation group for the period-2 hexagon solutionsPur approach of choosing a discrete time and a continuous
with single frequency forcing, is disconnected, and consist§Patial domain, is motivated by the symmetries of a periodi-
of two components. This is also true for stable period-2 ho<cally forced extended system, namely, a discrete time trans-
mogeneous solutions, which are invariant under time trandation symmetry and a continuous symmetry under spatial
lation by two units but not under time translations by onetranslations and rotations. In the context of models for vi-
unit, so thatP is a disconnected group with two elements. brated sand experiments, CCM models provide the simplest
Thus we expect to see two distinct domains and fronts sepd0ssible description of temporal period doubling, while al-
rating these domains, both in the hexagon solutions withowing for spatial patterns unconstrained by an imposed grid
single frequency forcing and in the period-2 homogeneou$39l-
solutions. These fronts are indeed observed in the experi- While we have not incorporated any physics specific to
ments[10,17], as well as our numerical simulatiofsee Fig. granular materials in the construction of our model, the
3). model captures many features of the bifurcations that are

For the case of the two frequency forcing, the dynamics i®bserved experimentally. Further, analysis implies that these
not invariant under translations by one time step. It is, howfeatures do not depend sensitively on the exact choices we
ever, invariant under translations by two time steps. As wenake for the functiondM (¢,r) and f(k) that define our
discuss in Sec. IXD, in our simulations stable hexagons arenodel. In this sense, these bifurcation phenomena may be
observed in a regime where only one type of hexagon soluregarded as universal to the class of systems with the follow-
tion is stable. We can show that, for this case, the transforing features.
mation grougP is connected. This is reflected in our numeri- (1) The system is strongly dissipative, and it can be effec-
cal simulations with two frequency forcing, where we do nottively described by one scalar fiefd
observe fronts. This is also true in the experiments with two (2) The interactions are not long ranged, and it is mean-
frequency forcing12]. ingful to talk about a “local” temporal dynamics faj(x) at

An implicit assumption underlying our discussion of pat- any given locatiorx.
tern selection has been that there is a unique stable attracting (3) The “local” temporal dynamics undergoes period
patternP for a given set of parameters in the sense that angloubling bifurcations as the parameters are varied.
two “global” asymptotic stable solutions are related by a (4) There is pattern formation at a preferred length scale.
symmetry transformation i?C G. This assumption is justi- Our approach then enables us to study the effects of ad-
fied by our analysis of the various patterns in Sec. VII andditional physical considerations, like the presence of a sec-
Secs. IXA-IX C, wherein we observe that all transitions be-ond length scaldthis generically leads to the formation of
tween the various patterned states, as well as the onset of tequare patterns breaking thet—t+ 1/f, time translation
patterned states, are nonhysteretic. A necessary condition fesymmetry (this leads to the stabilization of hexagonal pat-
this to be true is that the period doubling bifurcations of theterng and the effects of hysteresithis leads to the forma-
mapM should be supercritical. If the period doubling is sub-tion of oscillons and other localized structureand these
critical, there exist parameter regimes with multiple stablecan be regarded as universal properties of systems with these
patterns, and new phenomena are observed in these regimésatures. In particular, we would also expect to see these
In particular, with the map in Eq.9) used in place of the phenomena in other systems besides vibrated granular mate-
map in Eq.(5), there is a parameter regime where period-2rial.
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Note that our framework for a CCM model separates theone-dimensional map in E@5), and appropriately modify-
temporal dynamic$Eq. (1)] and the spatial couplinfEg.  ing the spatial coupling to account for the presence of two
(2)]. Furthermore, the spatial coupling operator is linearfields. We have refrained from doing this, since this would
Thus our framework for the CCM model has a special struc/make the model considerably more complex. It would also
ture that is not, in general, present in physical situationsgive us a larger number of undetermined parameters in the
However, the individual qualitative spatiotemporal bifurca-mMaps and in the couplings. While this might yield better
tions we find are generic in that they persist under smalfigreement with the experiments by making proper choices, it
Changes of the system' e.g., Changes that “mix’’ the tempo[L.JnS counter to our baSlC. approach, Wthh has begn 1.:0 find a
ral and the spatial dynamics. simple model that explains the dynarmcal underpinnings qf

As a second point, we note that a designation of a phethe observed phenomena, that are independent of physics
nomenon as “generic” or “universal’ does not imply that it specific to granular materials. Thus we wish to er_npha5|ze
always occurge.g., for a smooth maM (x,r), a single pe- that our particular model QOes not.probe the details _of Fhe
riod doubling does not necessarily guarantee the occurrenddlysics of granular materials, but is geared toward finding
of a full period doubling cascadieFor example, in the case the universal fea_tures of _syst_ems where pattern formation
of Faraday waves on a vertically vibrated fluid layer, a pe_and temporal period doubling interact. _
riod doubled homogeneous state is ruled out by incompress- !N conclusion, we believe that the CCM approach will be
ibility. Thus, when we label a phenomenon as generic ofruitful in the investigation of other systems beside vibrated
universal, we only require that the phenomenon persist unddianular layers. In this paper, we present a framework for the
small changes of the systejor equivalently the model equa- construction of a CCM model, given certain basic physical
tions and not that the phenomena always occur. As an i||usgon5|dgrat|ons, like dimensional ana}IyS|s and the symmetries
tration, for the case of vibrated granular materials, differentinderlying the system. We also give a procedure for the
choices ofM and £ in Egs. (1) and (2) may produce phase analysis of thes:_a models, using trunca_ted modal expansions
diagrams that differ somewhat from Fig. 4. and the separation of the time scales m_thg dynamics. This

Finally we wish to emphasize that our model is con-approach can be extended to c_>ther perlod|ca_lly forced ex-
structed so that it is simple. As we pointed out earlier, it carf®nded systems. In particular, this approach might yield use-
be generalized in may ways. While our model gives good‘ul results in the study of forcepl, strongly ;hssmatlve ex-
qualitative agreement with experiments on vibrated granulafénded systems, e.g., the experiments on vibrated layers of
layers, there are certain features of the experiment that caNery Viscous fluidg40].
not be captured by our model due to its simplicity. We have
chosen a scalar field variabfarepresenting the height of the ACKNOWLEDGMENTS
granular layer to describe the state of the system. However,
one would expect that the physics of the experimental syste
depends both on the height of the layer, as well as the Ioc%ﬂ

tion of the bottom of the layer relative to the oscillating .
: T dges support from the Alfred P. Sloan Jr. Foundation and
plate. In particular, our model cannot distinguish between th y the National Science Foundation under Award No. DMR

behaviors represented in Figgb2and Zc), and both these :
behaviors appear as period-2 cycles of the map. We therefo 975533. The work Qf E.O. was supported by the Office of
aval ResearcliPhysics.

lose the information that the bottom of the layer hits the plat
only once every two cycles in Fig(®, unlike in Fig. Zb),
where the bottom hits the plate on every cycle. In experi- APPENDIX A: THREE DOMINANT MODES

ments [10-13, the transition form period-2 patterns to |, the case with three dominant mode,={0, + 2k
period-2 flat states on increasifigapparently coincides with +2ky,+ 2K, £ (K1 — ko), = (Kp—Ka), = (Ks—ky)}. I,Eq. (211’)

the onset of the Ia_yer behavior as in FigcRi.e., the Ia_yer_ yields the following expressions for the mode amplitudes:
makes contact with the plate once every two oscillation

We thank Chris Bizon, Greg Huber, Heinrich Jaeger,
arkus Lacher, Mark Shattuck, Harry Swinney, and Paul
mbanhowar for valuable discussions. S. C. V. acknowl-

cycles. If we do the analogous numerical simulation with our g (0)=2g" (0)[|c,(k1)|2+|cn(Ks) |2+ |ca(Ka)|?
model, namely, we follow a solutions by varying the param-
eterr, then the period-2 patterns do not disappear on increas- +1dn(ky) 2+ [dn(ko) |2+ |dn(ks) %,

ing r. Consequently, the transitions between the period-2 pat-

terns and the period-2 flat state in our model shows c,(0)=2g.(0)[c,(kq)dy(ky)+c,(ko)dy(ky)

substantial hysteresis unlike in the experiment. In particular, . . N

the phase diagranfFig. 4) is obtained by starting with a +cn(ka)dy (kg) +dn(ky)cy (ky) +dn(kz)cp (kz)

random initial condition that is close to a homogeneous state, +d, (Ka)c* (Ks)]

and not by following solutions by continuously varying the mRs/En iRl

parameters andk./Kg. — * *
This discussion would suggest that we can improve the dn(ky—kz) =g (V3kg)[cn(ky)ch (ko) +dy(k1)dR (Ka) ],

agreement between our model and the experiment by consid- _ . N (A1)

ering two scalar fieldg(x) and 7(x) representing the top  Cn(K1—Kz) =04 (V3ko)[en(ky)dy (kz) +dn(ky)cy (ka) ],

and the bottom of the granular layer, using a two- . 5 5

dimensional map4,. 1, 7n+1) =M (&, 7,.7) instead of the dn(2k1)=0-(2ko)[ch(ky) +di(ka)]
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cn(2ky) =20, (2kg)Cn(ky)dn(ky). We have used subscripts to denote partial derivatives, and

A(r)=M(&*,r) is the stability index of the fixed point for
The mode amplitudes for all the modes @} can be ob- the mapM(.,r). We have a period-2 orbif,= &, for n odd
tained from the above expressions by complex conjugatioand &,= &, for n even if we have a solution to

and cyclic permutation.
62 M[M(‘f,r _P):r+P]

The solution to this equation gives the valgefor the odd
We consider the dynamical system iterates.£=&* is a solution forp=0. Using the implicit
function theorem, we will show that there is a solution close
Enr1=M(&n.1n), to &= ¢&* for sufficiently smallp. Assuming the existence of
a solution&(p), we can differentiate the above expression to
where obtain

ra=r-+(—1)"p, d d
P £=M§[M(§,r—p),r+p] Mg(g,r—p)d—i—l\/lr(&r—p)

APPENDIX B: PERIOD-2 FORCING FOR THE MAP

r is such that¢é=¢, is a stable fixed point for the map

M(.,r) andp is small, i.e., +M,[M(&r—p).r+p].

Mg (&%,r)p|<1—|\(r)]|. Rearranging, we obtain

df_ M,[M(§,r—p),r+p]—Mg[M(g,r—p),r+p]Mr(§,r—p)

dp 1=MM(&1—p),r +pIMe(&1—p)
At p=0£=£&", we haveM(&*,r)=\(r). The above expression then simplifies to give
dé _M(&*n)
dp 14+N\(r) "’

Since the fixed poing* is stable|\(r)| <1, so that the implicit function theorem applies and we have that=dr and 2, and
for sufficiently smallp,

Mr(f* 1r)

Ton () p+0(p?). (B1)

=& —(—1)

We now consider the stability of this solution.Nf; =M (&;,r —p) andN,=M(&,,r +p), we have
— [ * df, 2
Ni=M & .r+(=1)'p]=N(r)+Mg(§ ,r)p+Mgng+O(p)

=A(r)+(—1)

MM,
M§F_ 1+)\(r)}p+0(p2) (BZ)

Therefore,|N;N,|<\(r)2<1 if p is sufficiently small, so that the period-2 orbit is stable.
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